中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (10): 968-985.doi: 10.19401/j.cnki.1007-3639.2025.10.010
• 指南与共识 • 上一篇
中国抗癌协会多原发和不明原发肿瘤专业委员会, 上海市抗癌协会多原发和不明原发肿瘤专业委员会, 中华医学会血液学分会淋巴细胞疾病学组, 中华医学会血液学分会罕见病学组
收稿日期:2025-07-25
修回日期:2025-10-20
出版日期:2025-10-30
发布日期:2025-11-19
基金资助:Multiple Primary and Unknown Primary Tumors Special Committee of China Anti-Cancer Association , Shanghai Anti Cancer Association Multiple Primary and Unknown Primary Tumor Special Committee , Lymphocytic Disease Group, Hematology Branch, Chinese Medical Association , Rare Disease Group, Hematology Branch, Chinese Medical Association
Received:2025-07-25
Revised:2025-10-20
Published:2025-10-30
Online:2025-11-19
Supported by:文章分享
摘要:
血液肿瘤合并实体肿瘤(hematologic malignancies with solid tumor,HM-ST)作为多原发肿瘤(multiple primary malignancies,MPM)的一种特殊类型,在临床实践中日益增多,给诊疗带来严峻挑战。两种肿瘤在生物学行为、治疗策略及患者的预后上差异巨大,治疗决策需综合考虑优先顺序、同步/序贯化疗方案的选择及毒性管理。由于高质量研究证据缺乏,临床实践中常依赖于医师有限的经验。本共识旨在结合国内外最新进展及中国临床实践经验,梳理HM-ST的定义、分类、流行病学、病理学机制[如潜能不明的克隆性造血(clonal hematopoiesis of indeterminate potential,CHIP)、RNA剪接异常]、诊断流程(强调病理学诊断、分子生物学诊断及影像学诊断技术如PET/CT与靶向探针的应用)、治疗原则[突出多学科诊疗团队(multidisciplinary team,MDT)协作、治疗优先级决策、毒性管理、精细化放疗及“异病同治”策略]和随访管理。本共识重点提出了诊断、评估、治疗及随访方面的系列化推荐意见,以期为临床医师提供一套规范化、操作性强的指导依据,优化HM-ST患者的个体化诊疗,改善患者的预后并提高患者的生活质量。本共识已在国际实践指南注册平台(Practice guideline REgistration for transPAREncy,PREPARE)注册,注册号为PREPARE-2025CN1599。
中图分类号:
中国抗癌协会多原发和不明原发肿瘤专业委员会, 上海市抗癌协会多原发和不明原发肿瘤专业委员会, 中华医学会血液学分会淋巴细胞疾病学组, 中华医学会血液学分会罕见病学组. 血液肿瘤合并实体肿瘤诊疗专家共识(2025年版)[J]. 中国癌症杂志, 2025, 35(10): 968-985.
Multiple Primary and Unknown Primary Tumors Special Committee of China Anti-Cancer Association , Shanghai Anti Cancer Association Multiple Primary and Unknown Primary Tumor Special Committee , Lymphocytic Disease Group, Hematology Branch, Chinese Medical Association , Rare Disease Group, Hematology Branch, Chinese Medical Association . Expert consensus on diagnosis and treatment of hematologic malignancies with solid tumors (2025 version)[J]. China Oncology, 2025, 35(10): 968-985.
表4
免疫组织化学检测标志物组合(HM-ST)"
| 肿瘤类型 | 推荐免疫组织化学检测标志物组合 | 备注 |
|---|---|---|
| 肺腺癌 | TTF-1、napsin A、CK7 | TTF-1/napsin A阳性支持肺来源;CK7辅助鉴别腺癌 |
| 肺鳞癌 | p40、CK5/6、p63 | p40/p63强阳性为鳞癌特征;TTF-1通常阴性 |
| 乳腺癌 | ER、PR、HER2、GATA3、Ki-67增殖指数 | ER/PR/HER2指导治疗;GATA3支持乳腺来源;Ki-67增殖指数评估增殖活性 |
| 胃癌 | CK7、CK20、CDX2、HER2 | CK7+/CK20-或CDX2+支持胃腺癌;HER2检测用于靶向治疗 |
| 结直肠癌 | CK20、CDX2、SATB2、MLH1/MSH2/MSH6/PMS2(错配修复蛋白) | CK20+/CDX2+支持肠源性;MMR检测筛选林奇综合征 |
| 肝癌 | HepPar-1、arginase-1、glypican-3、AFP | HepPar-1/arginase-1特异性高;glypican-3/AFP辅助诊断 |
| 前列腺癌 | PSA、PSAP、NKX3.1、AMACR | PSA/PSAP/NKX3.1阳性支持前列腺来源;AMACR辅助鉴别癌与良性增生 |
| 卵巢癌 | CK7、PAX8、WT1、ER、p16、napsinA、HNF1β、p53 | PAX8+/WT1+支持浆液性癌 |
| 甲状腺癌 | TTF-1、TG、calcitonin(髓样癌)、BRAF V600E(如适用) | TTF-1+/TG+支持甲状腺滤泡来源;calcitonin诊断髓样癌 |
| 淋巴瘤 | B细胞:CD20、CD19、PAX5、BCL2、CD10、BCL6等;T细胞:CD3、CD5、CD4、CD8、CD30等;增殖指数:Ki-67;EBER原位杂交 | 需结合CD系列及分子检测(如MYC/BCL2重排) |
| 黑色素瘤 | S100、SOX10、melan-A、HMB45、BRAF V600E(如适用) | S100/SOX10敏感但非特异;melan-A/HMB45特异性高 |
| 肾细胞癌 | PAX8、CAIX、CD10、RCC | PAX8+/CAIX+支持透明细胞癌;RCC标志物辅助诊断 |
| 神经内分泌肿瘤 | Synaptophysin、chromogranin A、CD56、Ki-67增殖指数 | Syn/chromogranin A必查;Ki-67增殖指数分级(如G1/G2/G3) |
表5
“异病同治”治疗方案示例"
| 临床情景(HM-ST 组合) | 核心药物/机制 | 推荐方案示例(含具体药物) | 关键注意事项 |
|---|---|---|---|
| 经典型霍奇金淋巴瘤合并PD-L1高表达的NSCLC | 免疫检查点抑制剂(PD-1抑制剂) | 帕博利珠单抗或纳武利尤单抗单药或联合化疗: ① 序贯策略:先以A-AVD方案(维布妥昔单抗、多柔比星、长春花碱、达卡巴嗪)治疗经典型霍奇金淋巴瘤,待其缓解后,使用帕博利珠单抗单药治疗NSCLC。 ② 同步策略(适用于特定晚期经典型霍奇金淋巴瘤):可考虑纳武利尤单抗联合AVD方案 | 严密监测并管理irAE,特别是肺炎、肝炎和内分泌毒性。两种疾病均可能引发irAE,需仔细鉴别 |
| CML合并GIST | TKI | 伊马替尼标准剂量治疗: ① CML慢性期:伊马替尼400 mg 每日1次。 ② GIST:根据c-Kit/PDGFRA基因突变类型及治疗目的(辅助/晚期),伊马替尼剂量通常为400 mg 每日1次 | 伊马替尼可同时高效控制两种疾病。需常规监测血常规、肝功能,并关注水肿、皮疹、肌肉痉挛等常见不良反应 |
| 复发/难治性PTCL合并激素受体阳性/HER2阴性晚期乳腺癌 | 组蛋白去乙酰化酶(HDAC)抑制剂 | 西达本胺的应用 这是一个复杂的场景,通常采用序贯治疗: ① 优先以含吉西他滨或培美曲塞等药物的方案挽救治疗PTCL。 ② 在淋巴瘤病情稳定后,采用西达本胺联合内分泌治疗(如依西美坦)治疗乳腺癌,同时可能对惰性T细胞淋巴瘤有维持作用 | 同步治疗毒性风险高,需在经验丰富的中心MDT指导下进行。重点关注血液学毒性、心脏毒性(QTc间期延长)和血栓风险 |
| 复发难治性DLBCL合并铂类药物敏感的实体瘤(如卵巢癌、肺癌) | 铂类化疗药物 | 基于铂类药物的挽救性化疗方案: ① R-ICE方案(利妥昔单抗、异环磷酰胺、卡铂、依托泊苷)。 ② R-DHAP方案(利妥昔单抗、地塞米松、大剂量阿糖胞苷、顺铂)。 以上方案中的铂类药物(卡铂/顺铂)不仅是淋巴瘤挽救治疗的核心,也对多种实体瘤有效 | 毒性剧烈,需强有力的支持治疗。重点管理肾毒性(尤其是顺铂)、神经毒性和重度、持续的骨髓抑制。需充分水化、预防性使用G-CSF |
| FLT3突变阳性AML合并VEGF高表达的实体瘤(如肾癌) | 多靶点TKI(如索拉非尼) | 探索性应用: 在标准AML诱导化疗(如“7+3”方案)基础上,联合FLT3抑制剂(如吉瑞替尼)。若患者合并晚期肾癌,也可考虑使用索拉非尼或舒尼替尼这类多靶点TKI,它们既能抑制FLT3,也具有抗血管生成(抑制VEGFR)作用 | 此为非常规策略,仅限于MDT充分论证且患者无标准治疗选择时考虑,最好在临床试验框架下进行。需严密监测药物相互作用、心脏毒性、高血压和手足综合征 |
表6
《血液肿瘤合并实体肿瘤诊疗专家共识(2025年版)》内容汇总"
| 共识内容 | 证据级别 | 推荐强度 |
|---|---|---|
| 诊断与鉴别诊断 | ||
| 推荐意见1:确诊HM-ST的核心标准是,必须通过病理学检查(含免疫组织化学检测)和必要的分子生物学检测(如NGS),证实存在两种组织学来源不同的独立原发恶性肿瘤 | 高 | 强 |
| 推荐意见2:HM-ST的诊断流程应采用多维模式,起始于详细的临床评估,影像学检查推荐以18F-FDG PET/CT作为基础全身筛查手段,并根据情况辅以局部精查或靶向分子探针PET | 中 | 强 |
| 推荐意见3:最终确诊HM-ST必须依赖充分的病理学检查,包括活组织病理学检查、H-E染色和针对性的免疫组织化学检测标志物组合。疑难病例推荐进行NGS分子检测辅助鉴别 | 高 | 强 |
| 治疗原则 | ||
| 推荐意见4:HM-ST患者的治疗决策应在MDT框架下进行,整合多学科专家意见,全面评估 | 中 | 强 |
| 推荐意见5:治疗优先级的确定应基于对两种肿瘤侵袭性、对生命威胁程度等的综合评估,通常优先处理威胁更大者 | 低 | 强 |
| 推荐意见6:治疗方案的选择需严格遵循功能保留和减少毒性叠加的原则,推荐采用现代精细化放疗技术 | 中 | 强 |
| 推荐意见7:对于同时性HM-ST,推荐MDT评估后决定采取序贯治疗或同步治疗,治疗中需密切监测毒性并个体化调整 | 中 | 强 |
| 推荐意见8:对于异时性HM-ST,治疗决策需充分考虑首发肿瘤类型及既往治疗史,谨慎选择方案以避免毒性累加 | 中 | 强 |
| 推荐意见9:建议MDT评估“异病同治”的可能性,个体化选择药物,并警惕相关风险。新兴疗法主要限于临床试验 | 中 | 一般 |
| 随访与管理 | ||
| 推荐意见10:推荐对HM-ST患者进行长期、规律的随访,内容应包括临床、实验室、影像学及必要的分子监测 | 中 | 强 |
| 推荐意见11:随访期间应密切监测并积极管理治疗相关毒性,并根据患者情况采取必要的感染预防措施 | 高 | 强 |
| [1] | COPUR M S, MANAPURAM S. Multiple primary tumors over a lifetime[J]. Oncology, 2019, 33(7): 629384. |
| [2] |
HU Z, LI Z, MA Z C, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7): 701-708.
doi: 10.1038/s41588-020-0628-z pmid: 32424352 |
| [3] |
ZHENG B, HE J, HU W Q, et al. The role of clonal hematopoiesis of indeterminate potential in non-hematological malignancies of various origins[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880(5): 189442.
doi: 10.1016/j.bbcan.2025.189442 |
| [4] |
REED S C, CROESSMANN S, PARK B H. CHIP happens: clonal hematopoiesis of indeterminate potential and its relationship to solid tumors[J]. Clin Cancer Res, 2023, 29(8): 1403-1411.
doi: 10.1158/1078-0432.CCR-22-2598 |
| [5] |
ASADA K, KANEKO S, TAKASAWA K, et al. Integrated analysis of whole genome and epigenome data using machine learning technology: toward the establishment of precision oncology[J]. Front Oncol, 2021, 11: 666937.
doi: 10.3389/fonc.2021.666937 |
| [6] |
ASADA K, TAKASAWA K, MACHINO H, et al. Single-cell analysis using machine learning techniques and its application to medical research[J]. Biomedicines, 2021, 9(11): 1513.
doi: 10.3390/biomedicines9111513 |
| [7] | 中国抗癌协会多原发和不明原发肿瘤整合康复专业委员会, 陕西省抗癌协会罕见肿瘤专业委员会. 多原发肿瘤诊治中国专家共识(2024版)[J]. 中华消化外科杂志, 2024, 23(10): 1261-1276. |
| Chinese Anti-Cancer Association Integrated Rehabilitation Committee for Multiple Primary and Unknown Primary Tumors, Shaanxi Provincial Anti-Cancer Association Rare Tumor Professional Committee. China expert consensus on diagnosis and treatment of multiple primary tumors (2024 edition)[J]. Chin J Dig Surg, 2024, 23(10): 1261-1276. | |
| [8] |
HUANG J J, PANG W S, LOK V, et al. Incidence, mortality, risk factors, and trends for Hodgkin lymphoma: a global data analysis[J]. J Hematol Oncol, 2022, 15(1): 57.
doi: 10.1186/s13045-022-01281-9 |
| [9] | ISLAMI F, MARLOW E C, THOMSON B, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019[J]. CA A Cancer J Clin, 2024, 74(5): 405-432. |
| [10] |
SEREMIDI K, KLOUKOS D, POLYCHRONOPOULOU A, et al. Late effects of chemo and radiation treatment on dental structures of childhood cancer survivors. A systematic review and meta-analysis[J]. Head Neck, 2019, 41(9): 3422-3433.
doi: 10.1002/hed.v41.9 |
| [11] |
JAISWAL S, NATARAJAN P, SILVER A J, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease[J]. N Engl J Med, 2017, 377(2): 111-121.
doi: 10.1056/NEJMoa1701719 |
| [12] |
MORTON L M, SWERDLOW A J, SCHAAPVELD M, et al. Current knowledge and future research directions in treatment-related second primary malignancies[J]. EJC Suppl, 2014, 12(1):5-17.
doi: 10.1016/j.ejcsup.2014.05.001 pmid: 26217162 |
| [13] | OVERHOLSER L, SHAGISULTANOVA E, RABINOVITCH R A, et al. Breast cancer following radiation for Hodgkin lymphoma: clinical scenarios and risk-reducing strategies[J]. Oncology, 2016, 30(12): 1063-1070. |
| [14] |
ANAND K, ENSOR J, PINGALI S R, et al. T-cell lymphoma secondary to checkpoint inhibitor therapy[J]. J Immunother Cancer, 2020, 8(1): e000104.
doi: 10.1136/jitc-2019-000104 |
| [15] |
CAPPELL K M, KOCHENDERFER J N. Long-term outcomes following CAR T cell therapy: what we know so far[J]. Nat Rev Clin Oncol, 2023, 20(6): 359-371.
doi: 10.1038/s41571-023-00754-1 pmid: 37055515 |
| [16] |
CAPPELL K M, SHERRY R M, YANG J C, et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy[J]. J Clin Oncol, 2020, 38(32): 3805-3815.
doi: 10.1200/JCO.20.01467 pmid: 33021872 |
| [17] |
CHONG E A, RUELLA M, SCHUSTER S J. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy[J]. N Engl J Med, 2021, 384(7): 673-674.
doi: 10.1056/NEJMc2030164 |
| [18] |
PALUMBO A, BRINGHEN S, KUMAR S K, et al. Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data[J]. Lancet Oncol, 2014, 15(3): 333-342.
doi: 10.1016/S1470-2045(13)70609-0 pmid: 24525202 |
| [19] |
HJALGRIM H, EKSTRÖM-SMEDBY K, ROSTGAARD K, et al. Cigarette smoking and risk of Hodgkin lymphoma: a population-based case-control study[J]. Cancer Epidemiol Biomarkers Prev, 2007, 16(8): 1561-1566.
doi: 10.1158/1055-9965.EPI-07-0094 |
| [20] |
HIDAYAT K, LI H J, SHI B M. Anthropometric factors and non-Hodgkin’s lymphoma risk: systematic review and meta-analysis of prospective studies[J]. Crit Rev Oncol Hematol, 2018, 129: 113-123.
doi: 10.1016/j.critrevonc.2018.05.018 |
| [21] |
BAKKALCI D, JIA Y M, WINTER J R, et al. Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence[J]. J Glob Health, 2020, 10: 010405.
doi: 10.7189/jogh.10.010405 |
| [22] |
ZHANG Q, YIM R, LEE P, et al. Implications of clonal hematopoiesis in hematological and non-hematological disorders[J]. Cancers, 2024, 16(23): 4118.
doi: 10.3390/cancers16234118 |
| [23] |
VENINGA A, DE SIMONE I, HEEMSKERK J W M, et al. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding[J]. Haematologica, 2020, 105(8): 2020-2031.
doi: 10.3324/haematol.2019.235994 pmid: 32554558 |
| [24] |
KUSNE Y, XIE Z E, PATNAIK M M. Clonal hematopoiesis: molecular and clinical implications[J]. Leuk Res, 2022, 113: 106787.
doi: 10.1016/j.leukres.2022.106787 |
| [25] |
WEEKS L D, EBERT B L. Causes and consequences of clonal hematopoiesis[J]. Blood, 2023, 142(26): 2235-2246.
doi: 10.1182/blood.2023022222 pmid: 37931207 |
| [26] |
MALCIKOVA J, STANO-KOZUBIK K, TICHY B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia[J]. Leukemia, 2015, 29(4): 877-885.
doi: 10.1038/leu.2014.297 pmid: 25287991 |
| [27] |
GERSTUNG M, JOLLY C, LESHCHINER I, et al. The evolutionary history of 2 658 cancers[J]. Nature, 2020, 578: 122-128.
doi: 10.1038/s41586-019-1907-7 |
| [28] |
ZHANG Q, AI Y, ABDEL-WAHAB O. Molecular impact of mutations in RNA splicing factors in cancer[J]. Mol Cell, 2024, 84(19): 3667-3680.
doi: 10.1016/j.molcel.2024.07.019 pmid: 39146933 |
| [29] |
BLAND P, SAVILLE H, WAI P T, et al. SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response[J]. Nat Genet, 2023, 55(8): 1311-1323.
doi: 10.1038/s41588-023-01460-5 |
| [30] |
BESSA C, MATOS P, JORDAN P, et al. Alternative splicing: expanding the landscape of cancer biomarkers and therapeutics[J]. Int J Mol Sci, 2020, 21(23): 9032.
doi: 10.3390/ijms21239032 |
| [31] |
VAUPEL P, SCHMIDBERGER H, MAYER A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression[J]. Int J Radiat Biol, 2019, 95(7): 912-919.
doi: 10.1080/09553002.2019.1589653 pmid: 30822194 |
| [32] |
KAPOR S, SANTIBANEZ J F. Myeloid-derived suppressor cells and mesenchymal stem/stromal cells in myeloid malignancies[J]. J Clin Med, 2021, 10(13): 2788.
doi: 10.3390/jcm10132788 |
| [33] |
SHI H H, LI K, NI Y H, et al. Myeloid-derived suppressor cells: implications in the resistance of malignant tumors to T cell-based immunotherapy[J]. Front Cell Dev Biol, 2021, 9: 707198.
doi: 10.3389/fcell.2021.707198 |
| [34] |
SARVARIA A, MADRIGAL J A, SAUDEMONT A. B cell regulation in cancer and anti-tumor immunity[J]. Cell Mol Immunol, 2017, 14(8): 662-674.
doi: 10.1038/cmi.2017.35 pmid: 28626234 |
| [35] |
FAN R, DE BEULE N, MAES A, et al. The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers[J]. Front Immunol, 2022, 13: 1016059.
doi: 10.3389/fimmu.2022.1016059 |
| [36] |
FENDLER W P, CALAIS J, EIBER M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial[J]. JAMA Oncol, 2019, 5(6): 856-863.
doi: 10.1001/jamaoncol.2019.0096 |
| [37] |
KESSLER L, FERDINANDUS J, HIRMAS N, et al. 68Ga-FAPI as a diagnostic tool in sarcoma: data from the 68Ga-FAPI PET prospective observational trial[J]. J Nucl Med, 2022, 63(1): 89-95.
doi: 10.2967/jnumed.121.262096 |
| [38] |
SANLI Y, GARG I, KANDATHIL A, et al. Neuroendocrine tumor diagnosis and management: 68Ga-DOTATATE PET/CT[J]. AJR Am J Roentgenol, 2018, 211(2): 267-277.
doi: 10.2214/AJR.18.19881 |
| [39] |
LINDENBERG L, AHLMAN M, LIN F, et al. Advances in PET imaging of the CXCR4 receptor: [(68)Ga] Ga-PentixaFor[J]. Semin Nucl Med, 2024, 54(1): 163-170.
doi: 10.1053/j.semnuclmed.2023.09.002 |
| [40] |
PARIHAR A S, WAHL R L, JAHROMI A H. 68Ga-DOTATATE and 18F-FDG PET/CT in a rapidly progressing lymphoma[J]. Clin Nucl Med, 2025, 50(1): e64-e65.
doi: 10.1097/RLU.0000000000005450 |
| [41] | Cyclophosphamide. LiverTox. Clinical and research information on drug-induced liver injury[DB]. Bethesda (MD), 2012. |
| [42] | Ifosfamide. LiverTox. Clinical and research information on drug-induced liver injury[DB]. Bethesda (MD), 2012. |
| [43] |
MATTIOLI R, ILARI A, COLOTTI B, et al. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming[J]. Mol Aspects Med, 2023, 93: 101205.
doi: 10.1016/j.mam.2023.101205 |
| [44] |
BRYAN L J, CASULO C, ALLEN P B, et al. Pembrolizumab added to ifosfamide, carboplatin, and etoposide chemotherapy for relapsed or refractory classic Hodgkin lymphoma: a multi-institutional phase 2 investigator-initiated nonrandomized clinical trial[J]. JAMA Oncol, 2023, 9(5): 683-691.
doi: 10.1001/jamaoncol.2022.7975 pmid: 36928527 |
| [45] |
DUNLEAVY K, FANALE M A, ABRAMSON J S, et al. Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated aggressive diffuse large B-cell lymphoma with MYC rearrangement: a prospective, multicentre, single-arm phase 2 study[J]. Lancet Haematol, 2018, 5(12): e609-e617.
doi: 10.1016/S2352-3026(18)30177-7 |
| [46] |
SCORDO M, WANG T P, AHN K W, et al. Outcomes associated with thiotepa-based conditioning in patients with primary central nervous system lymphoma after autologous hematopoietic cell transplant[J]. JAMA Oncol, 2021, 7(7): 993-1003.
doi: 10.1001/jamaoncol.2021.1074 pmid: 33956047 |
| [47] | Thiotepa. LiverTox. Clinical and research information on drug-induced liver injury[DB]. Bethesda (MD), 2012. |
| [48] |
JALILI-NIK M, SOLTANI A, MASHKANI B, et al. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell leukemia/lymphoma[J]. Int Immunopharmacol, 2021, 98: 107870.
doi: 10.1016/j.intimp.2021.107870 |
| [49] |
KELLY C M, GUTIERREZ SAINZ L, CHI P. The management of metastatic GIST: current standard and investigational therapeutics[J]. J Hematol Oncol, 2021, 14(1): 2.
doi: 10.1186/s13045-020-01026-6 |
| [50] | GAO Y, HE H X, LI X P, et al. Sintilimab (anti-PD-1 antibody) plus chidamide (histone deacetylase inhibitor) in relapsed or refractory extranodal natural killer T-cell lymphoma (SCENT): a phase Ⅰb/Ⅱ study[J]. Signal Transduct Target Ther, 2024, 9(1): 121. |
| [51] |
WANG F, JIN Y, WANG M, et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial[J]. Nat Med, 2024, 30(4): 1035-1043.
doi: 10.1038/s41591-024-02813-1 pmid: 38438735 |
| [52] |
ZHANG Q Y, WANG T, GENG C Z, et al. Exploratory clinical study of chidamide, an oral subtype-selective histone deacetylase inhibitor, in combination with exemestane in hormone receptor-positive advanced breast cancer[J]. Chin J Cancer Res, 2018, 30(6): 605-612.
doi: 10.21147/j.issn.1000-9604.2018.06.05 |
| [53] |
RIA R, MELACCIO A, RACANELLI V, et al. Anti-VEGF drugs in the treatment of multiple myeloma patients[J]. J Clin Med, 2020, 9(6): 1765.
doi: 10.3390/jcm9061765 |
| [54] |
PADELLA A, GHELLI LUSERNA DI RORÀ A, MARCONI G, et al. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies[J]. J Hematol Oncol, 2022, 15(1): 10.
doi: 10.1186/s13045-022-01228-0 |
| [55] |
JIANG B S, WANG E S, DONOVAN K A, et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6[J]. Angew Chem Int Ed, 2019, 58(19): 6321-6326.
doi: 10.1002/anie.201901336 pmid: 30802347 |
| [56] |
YANG M J, TANG X, ZHANG Z L, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors[J]. Theranostics, 2020, 10(17): 7622-7634.
doi: 10.7150/thno.43991 pmid: 32685008 |
| [57] |
DENG W H, CHEN P P, LEI W, et al. CD70-targeting CAR-T cells have potential activity against CD19-negative B-cell lymphoma[J]. Cancer Commun, 2021, 41(9): 925-929.
doi: 10.1002/cac2.v41.9 |
| [58] |
XIE Z E, ZEIDAN A M. CHIPing away the progression potential of CHIP: a new reality in the making[J]. Blood Rev, 2023, 58: 101001.
doi: 10.1016/j.blre.2022.101001 |
| [59] |
QIU J Y, SHENG D D, LIN F, et al. The efficacy and safety of trilaciclib in preventing chemotherapy-induced myelosuppression: a systematic review and meta-analysis of randomized controlled trials[J]. Front Pharmacol, 2023, 14: 1157251.
doi: 10.3389/fphar.2023.1157251 |
| [1] | 赵翊含, 林岩松. 《2025版美国甲状腺学会成人分化型甲状腺癌管理指南》解读:分化型甲状腺癌的核医学诊治进展[J]. 中国癌症杂志, 2025, 35(9): 815-825. |
| [2] | 王彤, 孙伟, 徐宇, 胡涂, 刘琬琳, 郑琼丹, 邹孜瑊, 董子瑞, 马文杰, 陈勇. 肢端型黑色素瘤组织中MITF的表达及其与临床、病理学特征及预后的相关性研究[J]. 中国癌症杂志, 2025, 35(9): 859-866. |
| [3] | 钟佳倩, 李家平, 谢晓燕, 郑艳玲. 乳腺癌新辅助治疗后的腋窝管理及前哨淋巴结诊治的优化[J]. 中国癌症杂志, 2025, 35(9): 884-892. |
| [4] | 刘瑄, 郑玉菡. AB型胸腺瘤术后合并纯红细胞再生障碍性贫血及急性视网膜坏死1例报道并文献回顾[J]. 中国癌症杂志, 2025, 35(9): 893-898. |
| [5] | 翟梓涵, 陈盛. MRI预测乳腺癌淋巴结状态的研究进展及展望[J]. 中国癌症杂志, 2025, 35(8): 799-807. |
| [6] | 李心翔, 骆大葵. 直肠癌外科治疗的创新模式探讨[J]. 中国癌症杂志, 2025, 35(7): 631-636. |
| [7] | 张钰洋, 刘骞. 结直肠癌新辅助免疫治疗的进展与展望[J]. 中国癌症杂志, 2025, 35(7): 642-656. |
| [8] | 安杨, 王晨童, 邱小原, 周皎琳, 林国乐. 局部进展期直肠癌新辅助免疫治疗免疫相关不良反应的临床管理及分析[J]. 中国癌症杂志, 2025, 35(7): 665-671. |
| [9] | 钱佳佳, 阮聪, 刘继勇, 徐蕊. 免疫检查点抑制剂在肢端型黑色素瘤治疗中的研究进展[J]. 中国癌症杂志, 2025, 35(7): 702-709. |
| [10] | 王红霞, 殷咏梅, 胡夕春. 中国乳腺癌患者BRCA1/2基因检测与临床应用专家共识(2025年版)[J]. 中国癌症杂志, 2025, 35(7): 710-734. |
| [11] | 田田, 陈晨, 魏然, 包龙龙, 顾丙新, 张群岭, 曹军宁, 于宝华, 李小秋, 周晓燕. 弥漫性大B细胞淋巴瘤基因变异特征与18F-FDG PET/CT SUVmax的关系解析及其临床意义[J]. 中国癌症杂志, 2025, 35(6): 531-542. |
| [12] | 范素梅, 信聪伶, 朱来芳, 刘畅, 徐蕊, 周正荣, 程玺. 卡瑞利珠单抗联合化疗及靶向治疗在复发、转移及初治晚期宫颈癌中的疗效与安全性分析:一项回顾性队列研究[J]. 中国癌症杂志, 2025, 35(6): 570-577. |
| [13] | 鲍正敏, 李乾永, 鲁晓腾, 杨彦举. 分次内CBCT影像引导技术引入DIBH在左侧乳腺癌放疗中的意义[J]. 中国癌症杂志, 2025, 35(6): 578-584. |
| [14] | 李浩, 邓瑾, 刘沛华, 张泉涌, 蔡寨. 食管胃结合部腺癌皮肤转移1例报道及疗效分析[J]. 中国癌症杂志, 2025, 35(6): 601-604. |
| [15] | 龚卫华, 陈兰, 赵昆, 柯追, 许青, 郭献灵. 端粒酶抑制剂BIBR1532联合自噬抑制剂CQ抑制黑色素瘤细胞生存的机制研究[J]. 中国癌症杂志, 2025, 35(5): 431-439. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn