| [1] |
ZHANG Y W, GVOZDENOVIC A, ACETO N. A molecular voyage: multiomics insights into circulating tumor cells[J]. Cancer Discov, 2024, 14(6): 920-933.
doi: 10.1158/2159-8290.CD-24-0218
|
| [2] |
GURZU S, SZODORAI R, JUNG I, et al. Combined hepatocellular-cholangiocarcinoma: from genesis to molecular pathways and therapeutic strategies[J]. J Cancer Res Clin Oncol, 2024, 150(5): 270.
doi: 10.1007/s00432-024-05781-8
pmid: 38780656
|
| [3] |
SUN Y F, LI T, DING L, et al. Platelet-mediated circulating tumor cell evasion from natural killer cell killing through immune checkpoint CD155-TIGIT[J]. Hepatology, 2025, 81(3): 791-807.
doi: 10.1097/HEP.0000000000000934
|
| [4] |
FABISIEWICZ A, SZOSTAKOWSKA-RODZOS M, ZACZEK A J, et al. Circulating tumor cells in early and advanced breast cancer; biology and prognostic value[J]. Int J Mol Sci, 2020, 21(5): 1671.
doi: 10.3390/ijms21051671
|
| [5] |
ARNOLD L, YAP M, FARROKHIAN N, et al. DCLK1-mediated regulation of invadopodia dynamics and matrix metalloproteinase trafficking drives invasive progression in head and neck squamous cell carcinoma[J]. Mol Cancer, 2025, 24(1): 50.
doi: 10.1186/s12943-025-02264-3
pmid: 39994636
|
| [6] |
HAO Z X, ZHANG M R, DU Y, et al. Invadopodia in cancer metastasis: dynamics, regulation, and targeted therapies[J]. J Transl Med, 2025, 23(1): 548.
doi: 10.1186/s12967-025-06526-y
|
| [7] |
HSU C M, LIU Y C, HUANG J F. Exploring circulating tumor cells: detection methods and biomarkers for clinical evaluation in hepatocellular carcinoma[J]. J Clin Transl Hepatol, 2024, 12(12): 1020-1042.
|
| [8] |
PEI F, TAO Z, LU Q, et al. Octamer-binding transcription factor 4-positive circulating tumor cell predicts worse treatment response and survival in advanced cholangiocarcinoma patients who receive immune checkpoint inhibitors treatment[J]. World J Surg Oncol, 2024, 22(1): 110.
doi: 10.1186/s12957-024-03369-7
pmid: 38664770
|
| [9] |
YANG J D, CAMPION M B, LIU M C, et al. Circulating tumor cells are associated with poor overall survival in patients with cholangiocarcinoma[J]. Hepatology, 2016, 63(1): 148-58.
doi: 10.1002/hep.27944
pmid: 26096702
|
| [10] |
ROSSI T, VALGIUSTI M, PUCCETTI M, et al. Gastroesophageal circulating tumor cell crosstalk with peripheral immune system guides CTC survival and proliferation[J]. Cell Death Dis, 2025, 16(1): 223.
doi: 10.1038/s41419-025-07530-2
|
| [11] |
HAO W D, DONG X C, WANG Z J, et al. CRABP2 promotes peritoneal metastasis in CRC through TGF-β/Smad-mediated EMT signaling and invadopodia formation[J]. Cell Signal, 2025, 134: 111927.
doi: 10.1016/j.cellsig.2025.111927
|
| [12] |
ALLGAYER H, MAHAPATRA S, MISHRA B, et al. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025[J]. Mol Cancer, 2025, 24(1): 167.
doi: 10.1186/s12943-025-02338-2
|
| [13] |
LI C, HE W, WANG N, et al. Application of microfluidics in detection of circulating tumor cells[J]. Front Bioeng Biotechnol, 2022, 10: 907232.
doi: 10.3389/fbioe.2022.907232
|
| [14] |
HASSANZADEH-BARFOROUSHI A, TUKOVA A, NADALINI A, et al. Microfluidic-SERS technologies for CTC: a perspective on clinical translation[J]. ACS Appl Mater Interfaces, 2024, 16(18): 22761-22775.
|
| [15] |
GOSTOMCZYK K, MARSOOL M D M, TAYYAB H, et al. Targeting circulating tumor cells to prevent metastases[J]. Hum Cell, 2024, 37(1): 101-120.
doi: 10.1007/s13577-023-00992-6
|
| [16] |
ZHOU X, KONG X H, LU J, et al. Circulating tumor cell-derived exosome-transmitted long non-coding RNA TTN-AS1 can promote the proliferation and migration of cholangiocarcinoma cells[J]. J Nanobiotechnology, 2024, 22(1): 191.
doi: 10.1186/s12951-024-02459-8
|
| [17] |
ZHANG Q, KONG D F, YANG Z R, et al. Prognostic value of stem-like circulating tumor cells in patients with cancer: a systematic review and meta-analysis[J]. Clin Exp Med, 2023, 23(6): 1933-1944.
doi: 10.1007/s10238-023-01009-0
pmid: 36735207
|
| [18] |
TRETYAKOVA M S, MENYAILO M E, SCHEGOLEVA A A, et al. Technologies for viable circulating tumor cell isolation[J]. Int J Mol Sci, 2022, 23(24): 15979.
doi: 10.3390/ijms232415979
|
| [19] |
TANG R, LUO S J, LIU H, et al. Circulating tumor microenvironment in metastasis[J]. Cancer Res, 2025, 85(8): 1354-1367.
|
| [20] |
KROG B L, HENRY M D. Biomechanics of the circulating tumor cell microenvironment[J]. Adv Exp Med Biol, 2018, 1092: 209-233.
doi: 10.1007/978-3-319-95294-9_11
pmid: 30368755
|
| [21] |
NAGAOKA K, OGAWA K, JI C C, et al. Targeting aspartate beta-hydroxylase with the small molecule inhibitor MO-I-1182 suppresses cholangiocarcinoma metastasis[J]. Dig Dis Sci, 2021, 66(4): 1080-1089.
doi: 10.1007/s10620-020-06330-2
|
| [22] |
LAWRENCE R, WATTERS M, DAVIES C R, et al. Circulating tumour cells for early detection of clinically relevant cancer[J]. Nat Rev Clin Oncol, 2023, 20(7): 487-500.
doi: 10.1038/s41571-023-00781-y
pmid: 37268719
|
| [23] |
WU Q Y, GU Z R, SHANG B Q, et al. Circulating tumor cell clustering modulates RNA splicing and polyadenylation to facilitate metastasis[J]. Cancer Lett, 2024, 588: 216757.
doi: 10.1016/j.canlet.2024.216757
|
| [24] |
XU D M, ZHUANG X Y, MA H L, et al. Altered tumor microenvironment heterogeneity of penile cancer during progression from non-lymphatic to lymphatic metastasis[J]. Cancer Med, 2024, 13(14): e70025.
doi: 10.1002/cam4.v13.14
|
| [25] |
XU D M, CHEN L X, ZHUANG X Y, et al. The role of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer[J]. Int J Med Sci, 2024, 21(6): 1176-1186.
doi: 10.7150/ijms.95490
|
| [26] |
GUO S Y, HUANG J, LI G P, et al. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis[J]. Mol Cancer, 2023, 22(1): 193.
doi: 10.1186/s12943-023-01909-5
pmid: 38037077
|
| [27] |
KISS I, KOLOSTOVA K, PAWLAK I, et al. Circulating tumor cells in gynaecological malignancies[J]. J BUON, 2020, 25(1): 40-50.
pmid: 32277613
|
| [28] |
SUVILESH K N, MANJUNATH Y, PANTEL K, et al. Preclinical models to study patient-derived circulating tumor cells and metastasis[J]. Trends Cancer, 2023, 9(4): 355-371.
doi: 10.1016/j.trecan.2023.01.004
pmid: 36759267
|
| [29] |
TOCCI P, CAPRARA V, ROMAN C, et al. YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer[J]. Biosci Rep, 2024, 44(12): BSR20241320.
doi: 10.1042/BSR20241320
|
| [30] |
DAVIS S S, BASSARO L R, TUMA P L. MAL2 and rab17 selectively redistribute invadopodia proteins to laterally-induced protrusions in hepatocellular carcinoma cells[J]. Mol Biol Cell, 2025, 36(3): ar26.
doi: 10.1091/mbc.E24-09-0400
|
| [31] |
TANG Y Y, HE Y, ZHANG P, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis[J]. Mol Cancer, 2018, 17(1): 77.
doi: 10.1186/s12943-018-0825-x
pmid: 29618386
|
| [32] |
DOLSKII A, ALCANTARA DOS SANTOS S A, ANDRAKE M, et al. Exploring the potential role of palladin in modulating human CAF/ECM functional units[J]. Cytoskeleton, 2025, 82(3): 175-185.
doi: 10.1002/cm.v82.3
|
| [33] |
XIN X, CHENG X Y, ZENG F X, et al. The role of TGF-β/SMAD signaling in hepatocellular carcinoma: From mechanism to therapy and prognosis[J]. Int J Biol Sci, 2024, 20(4): 1436-1451.
doi: 10.7150/ijbs.89568
pmid: 38385079
|
| [34] |
MAHAKI H, NOBARI S, TANZADEHPANAH H, et al. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: therapeutic strategies and insights[J]. Biomed Pharmacother, 2025, 186: 118023.
doi: 10.1016/j.biopha.2025.118023
|
| [35] |
BRAVO-CORDERO J J, HODGSON L, CONDEELIS J S. Spatial regulation of tumor cell protrusions by RhoC[J]. Cell Adh Migr, 2014, 8(3): 263-267.
doi: 10.4161/cam.28405
|
| [36] |
KIM K H, YI H S, LEE H, et al. Targeting the sequences of circulating tumor DNA of cholangiocarcinomas and its applications and limitations in clinical practice[J]. Int J Mol Sci, 2023, 24(8): 7512.
doi: 10.3390/ijms24087512
|
| [37] |
SHARIFI M N, SPERGER J M, TAYLOR A K, et al. High-purity CTC RNA sequencing identifies prostate cancer lineage phenotypes prognostic for clinical outcomes[J]. Cancer Discov, 2025, 15(5): 969-987.
doi: 10.1158/2159-8290.CD-24-1509
|
| [38] |
DUTTA D, AL HOQUE A, PAUL B, et al. EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment[J]. J Biomed Sci, 2024, 31(1): 81.
doi: 10.1186/s12929-024-01069-8
pmid: 39164686
|
| [39] |
XUE W H, YANG L, CHEN C X, et al. Wnt/β-catenin-driven EMT regulation in human cancers[J]. Cell Mol Life Sci, 2024, 81(1): 79.
doi: 10.1007/s00018-023-05099-7
pmid: 38334836
|
| [40] |
ALEMZADEH E, ALLAHQOLI L, DEHGHAN H, et al. Circulating tumor cells and circulating tumor DNA in breast cancer diagnosis and monitoring[J]. Oncol Res, 2023, 31(5): 667-675.
doi: 10.32604/or.2023.028406
pmid: 37547763
|
| [41] |
NING Y D, ZHENG M Y, ZHANG Y, et al. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential[J]. Cancer Cell Int, 2024, 24(1): 339.
doi: 10.1186/s12935-024-03519-7
pmid: 39402585
|
| [42] |
ZHU B B, CAO A Y, CHEN C Q, et al. MMP-9 inhibition alleviates postoperative cognitive dysfunction by improving glymphatic function via regulating AQP4 polarity[J]. Int Immunopharmacol, 2024, 126: 111215.
doi: 10.1016/j.intimp.2023.111215
|
| [43] |
RAPANOTTI M C, CENCI T, SCIOLI M G, et al. Circulating tumor cells: Origin, role, current applications, and future perspectives for personalized medicine[J]. Biomedicines, 2024, 12(9): 2137.
doi: 10.3390/biomedicines12092137
|
| [44] |
DONATO C, KUNZ L, CASTRO-GINER F, et al. Hypoxia triggers the intravasation of clustered circulating tumor cells[J]. Cell Rep, 2020, 32(10): 108105.
doi: 10.1016/j.celrep.2020.108105
|
| [45] |
SOMSEN B A, COSSAR P J, ARKIN M R, et al. 14-3-3 protein-protein interactions: From mechanistic understanding to their small-molecule stabilization[J]. Chembiochem, 2024, 25(14): e202400214.
doi: 10.1002/cbic.v25.14
|
| [46] |
HUANG L, WANG J X, WANG X Y, et al. Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation[J]. Cancer Lett, 2024, 601: 217145.
doi: 10.1016/j.canlet.2024.217145
|
| [47] |
ZHOU Y, CAO Y D, LIU W D, et al. Leveraging a gene signature associated with disulfidptosis identified by machine learning to forecast clinical outcomes, immunological heterogeneities, and potential therapeutic targets within lower-grade glioma[J]. Front Immunol, 2023, 14: 1294459.
doi: 10.3389/fimmu.2023.1294459
|
| [48] |
WANG X, ZHANG H Y, CHEN X Z. Drug resistance and combating drug resistance in cancer[J]. Cancer Drug Resist, 2019, 2(2): 141-160.
|
| [49] |
ZHANG Q, ZHANG X L, LV Z H, et al. Dynamically monitoring minimal residual disease using circulating tumor cells to predict the recurrence of early-stage lung adenocarcinoma[J]. J Hematol Oncol, 2024, 17(1): 114.
doi: 10.1186/s13045-024-01637-3
|
| [50] |
MENG S, SØRENSEN E E, PONNIAH M, et al. MCT4 and CD147 colocalize with MMP14 in invadopodia and support matrix degradation and invasion by breast cancer cells[J]. J Cell Sci, 2024, 137(8): jcs261608.
doi: 10.1242/jcs.261608
|
| [51] |
QUILAQUEO-MILLAQUEO N, BROWN-BROWN D A, VIDAL-VIDAL J A, et al. NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion[J]. Biol Res, 2024, 57(1): 98.
doi: 10.1186/s40659-024-00577-z
|