China Oncology ›› 2022, Vol. 32 ›› Issue (6): 527-534.doi: 10.19401/j.cnki.1007-3639.2022.06.007
• Article • Previous Articles Next Articles
ZHANG Qixiang()(
), YOU Yongping(
)(
)
Revised:
2022-05-04
Online:
2022-06-30
Published:
2022-07-21
Contact:
YOU Yongping
E-mail:2418654625@qq.com;YYPL9@njmu.edu.cn
Share article
CLC Number:
ZHANG Qixiang, YOU Yongping. ZDHHC12 regulates tumor properties through YAP1 in glioblastoma[J]. China Oncology, 2022, 32(6): 527-534.
Fig. 1
ZDHHC12 is upregulated in GBM tissues and cell lines and regulates YAP1 A: Expression of ZDHHC12 in GBM and normal brain tissues were shown (P<0.01); B: Protein and mRNA expression of ZDHHC12 in U87, U251 and NHAs were shown (P<0.01); C: The protein levels of endogenous ZDHHC12 and YAP1 were analyzed with the knockdown of USP21 in 2 different GBM cell lines; D: HEK293T cells were transfected with Myc-ZDHHC12 with or without Flag-YAP1. Cell lysates were subjected to IP with anti-Flag and anti-Myc antibodies. The immunoprecipitates and lysates were analyzed by IB; E: The cell lysates from U87 and U251 were subjected to IP with anti-ZDHHC12 or anti-YAP1 antibodies. Then the immunoprecipitates were detected by IB. IgG was used as a control group."
Fig. 2
ZDHHC12/YAP1 axis regulated tumor properties of GBM A: Effects of ZDHHC12 knockdown and YAP1 restoration on GBM proliferative capacity in CCK-8 experiments (P<0.01); B: Effects of ZDHHC12 knockdown and YAP1 restoration on GBM proliferation in cell plate cloning experiments. Quantitative statistics were shown (P<0.01); C: Effects of ZDHHC12 knockdown and YAP1 restoration on GBM migration ability in scratch experiments; D: Quantitative statistics of scratch experiments (P <0.05); E: Effects of ZDHHC12 knockdown and YAP1 restoration on EMT-related markers."
Fig. 3
ZDHHC12 negatively correlated with prognosis in GBM patients and highly positively correlated with YAP1 in GBM tissues A: The relationship between the expression level of ZDHHC12 and the prognosis of GBM patients (P<0.05); B: Relationship between ZDHHC12 and YAP1 in GBM from TCGA database (P<0.01); C: Protein levels of ZDHHC12 and YAP1 were detected in 4 individual groups of GBM and normal brain tissues."
[1] |
ALEXANDER B M,, CLOUGHESY T F. Adult glioblastoma[J]. J Clin Oncol, 2017, 35(21): 2402-2409.
doi: 10.1200/JCO.2017.73.0119 |
[2] |
LAMOUILLE S,, XU J,, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
doi: 10.1038/nrm3758 |
[3] |
ZANCONATO F,, CORDENONSI M,, PICCOLO S. YAP/TAZ at the roots of cancer[J]. Cancer Cell, 2016, 29(6): 783-803.
doi: 10.1016/j.ccell.2016.05.005 |
[4] |
ZHAO M,, ZHANG Y,, JIANG Y, et al. YAP promotes autophagy and progression of gliomas via upregulating HMGB1[J]. J Exp Clin Cancer Res, 2021, 40(1): 99.
doi: 10.1186/s13046-021-01897-8 |
[5] |
GUICHET P O,, MASLIANTSEV K,, TACHON G, et al. Fatal correlation between YAP1 expression and glioma aggressiveness: clinical and molecular evidence[J]. J Pathol, 2018, 246(2): 205-216.
doi: 10.1002/path.5133 |
[6] |
FU W W,, ZHAO P,, LI H, et al. Bazedoxifene enhances paclitaxel efficacy to suppress glioblastoma via altering Hippo/YAP pathway[J]. J Cancer, 2020, 11(3): 657-667.
doi: 10.7150/jca.38350 |
[7] |
ROTH A F,, WAN J M,, BAILEY A O, et al. Global analysis of protein palmitoylation in yeast[J]. Cell, 2006, 125(5): 1003-1013.
doi: 10.1016/j.cell.2006.03.042 |
[8] | KO P J,, DIXON S J. Protein palmitoylation and cancer[J]. EMBO Rep, 2018, 19(10): e46666. |
[9] |
MIZUMARU C,, SAITO Y,, ISHIKAWA T, et al. Suppression of APP-containing vesicle trafficking and production of beta-amyloid by AID/DHHC-12 protein[J]. J Neurochem, 2009, 111(5): 1213-1224.
doi: 10.1111/j.1471-4159.2009.06399.x |
[10] |
YUAN M,, CHEN X B,, SUN Y T, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression[J]. Acta Pharm Sin B, 2020, 10(8): 1426-1439.
doi: 10.1016/j.apsb.2020.03.008 |
[11] |
OMURO A,, DEANGELIS L M. Glioblastoma and other malignant gliomas: a clinical review[J]. JAMA, 2013, 310(17): 1842-1850.
doi: 10.1001/jama.2013.280319 |
[12] |
LE RHUN E,, PREUSSER M,, ROTH P, et al. Molecular targeted therapy of glioblastoma[J]. Cancer Treat Rev, 2019, 80: 101896.
doi: 10.1016/j.ctrv.2019.101896 |
[13] |
AIELLO N M,, KANG Y B. Context-dependent EMT programs in cancer metastasis[J]. J Exp Med, 2019, 216(5): 1016-1026.
doi: 10.1084/jem.20181827 |
[14] | JIANG S Y,, WANG X T,, SONG D L, et al. Cholesterol induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP[J]. Cancer Res, 2019, 79(12): 3063-3075. |
[15] |
FAN L G,, CHEN Z X,, WU X T,, et al. Ubiquitin-specific protease 3 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via stabilizing snail[J]. Mol Cancer Res, 2019, 17(10): 1975-1984.
doi: 10.1158/1541-7786.MCR-19-0197 |
[16] |
PAN D J. The hippo signaling pathway in development and cancer[J]. Dev Cell, 2010, 19(4): 491-505.
doi: 10.1016/j.devcel.2010.09.011 |
[17] |
HONG W J,, GUAN K L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway[J]. Semin Cell Dev Biol, 2012, 23(7): 785-793.
doi: 10.1016/j.semcdb.2012.05.004 |
[18] |
SHIBATA M,, HAM K,, HOQUE M O. A time for YAP1: tumorigenesis, immunosuppression and targeted therapy[J]. Int J Cancer, 2018, 143(9): 2133-2144.
doi: 10.1002/ijc.31561 |
[19] |
WANG Y,, PAN P,, WANG Z H, et al. Β-catenin-mediated YAP signaling promotes human glioma growth[J]. J Exp Clin Cancer Res, 2017, 36(1): 136.
doi: 10.1186/s13046-017-0606-1 |
[20] |
ZHANG Y,, XIE P,, WANG X, et al. YAP promotes migration and invasion of human glioma cells[J]. J Mol Neurosci, 2018, 64(2): 262-272.
doi: 10.1007/s12031-017-1018-6 |
[21] |
ARTINIAN N,, CLONINGER C,, HOLMES B, et al. Phosphorylation of the hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness[J]. J Biol Chem, 2015, 290(32): 19387-19401.
doi: 10.1074/jbc.M115.656587 |
[22] |
LEE S,, KANG H,, SHIN E, et al. BEX1 and BEX4 induce GBM progression through regulation of actin polymerization and activation of YAP/TAZ signaling[J]. Int J Mol Sci, 2021, 22(18): 9845.
doi: 10.3390/ijms22189845 |
[23] |
MELHUISH T A,, KOWALCZYK I,, MANUKYAN A, et al. Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression[J]. Biochim Biophys Acta Gene Regul Mech, 2018, 1861(11): 983-995.
doi: 10.1016/j.bbagrm.2018.10.005 |
[24] |
ZHANG Z X,, LI X,, YANG F, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis[J]. Nat Commun, 2021, 12(1): 5872.
doi: 10.1038/s41467-021-26180-4 |
[25] | CHEN X R,, MA H H,, WANG Z, et al. EZH2 palmitoylation mediated by ZDHHC5 in p53-mutant glioma drives malignant development and progression[J]. Cancer Res, 2017, 77(18): 4998-5010. |
[26] |
FAN X Q,, YANG H R,, ZHAO C G, et al. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation[J]. Stem Cell Res Ther, 2021, 12(1): 107.
doi: 10.1186/s13287-021-02175-2 |
[27] |
CHEN X R,, HAO A J,, LI X, et al. Activation of JNK and p38 MAPK mediated by ZDHHC17 drives glioblastoma multiforme development and malignant progression[J]. Theranostics, 2020, 10(3): 998-1015.
doi: 10.7150/thno.40076 |
[28] |
CHEN X R,, HU L,, YANG H R, et al. DHHC protein family targets different subsets of glioma stem cells in specific niches[J]. J Exp Clin Cancer Res, 2019, 38(1): 25.
doi: 10.1186/s13046-019-1033-2 |
[29] |
SHEN Z C,, WU P F,, WANG F, et al. Gephyrin palmitoylation in basolateral amygdala mediates the anxiolytic action of benzodiazepine[J]. Biol Psychiatry, 2019, 85(3): 202-213.
doi: 10.1016/j.biopsych.2018.09.024 |
[1] | ZHENG Wentian, GONG Hui, ZHANG Xinyue, HAO Jiayi, WANG Yajie, JIANG Yingying. Effects of SEC14L1P1 on proliferation and migration of oral squamous cell carcinoma cells [J]. China Oncology, 2025, 35(3): 309-319. |
[2] | SUN Rongqi, SONG Ning, ZHENG Wentian, ZHANG Xinyue, LI Minmin, GONG Hui, JIANG Yingying. Effect of long noncoding RNA FLJ30679 on proliferation and migration of oral squamous cell carcinoma cells [J]. China Oncology, 2024, 34(5): 439-450. |
[3] | LIU Xuerou, YANG Yumei, ZHAO Qian, RONG Xiangyu, LIU Wei, ZHENG Ruijie, PANG Jinlong, LI Xian, LI Shanshan. Research progress on the role of glutamine metabolism-related proteins in tumor metastasis [J]. China Oncology, 2024, 34(1): 97-103. |
[4] | JIA Liqing, GE Xiaolu, JIANG Lin, ZHOU Xiaoyan. Effects of lncRNA PKD2-2-3 on cell proliferation, clone formation, migration, and invasion of lung adenocarcinoma [J]. China Oncology, 2023, 33(8): 717-725. |
[5] | LÜ Ye, YING Yexia, YANG Wenjing, HOU Yujin, YUAN Chunxiu, CAO Xiangmei. The effect of DZNep on tumor microenvironment through regulating exosomes derived from invasive breast carcinoma [J]. China Oncology, 2022, 32(9): 827-835. |
[6] | Diao Xinfeng, Li Xinmao, Hou Liang, Wei Zhixuan. YTHDF2 promotes progression of glioblastoma via inducing mRNA decay of IGFBP7 and activating PI3K/AKT signaling pathway [J]. China Oncology, 2022, 32(3): 218-227. |
[7] | ZHANG Xuecheng , GUAN Xiaohui . Circ_0007142 accelerates epithelial-mesenchymal transition and invasion of gastric cancer cells through sponging miR-647 and regulating CCR8 gene [J]. China Oncology, 2021, 31(8): 714-724. |
[8] | XIE Jinfang , CAO Chunyu , REN Xue , TIAN Jiajun , LÜ Yafeng , HUANG Xiaofei . Effects of sulforaphane on epithelial-mesenchymal transition, proliferation and migration of mouse breast cancer 4T1 cells [J]. China Oncology, 2021, 31(7): 605-615. |
[9] | YANG Liusong , ZHU Yingfeng , TANG Jianmin . Ten cases of epithelioid glioblastoma and review of literature [J]. China Oncology, 2021, 31(2): 114-120. |
[10] | YE Xingming , WANG Lin , JIA Jing , WU Xiufeng , CHEN Ying . miR-375 targeting YAP1 modulates trastuzumab resistance through epithelial-mesenchymal transition in breast cancer cells [J]. China Oncology, 2021, 31(1): 27-34. |
[11] | FENG Bo, WANG Gaoyan, LIANG Xiaoliang, WU Zheng, GUO Yanli, SHEN Supeng, GUO Wei. The expression level of FAM83H in esophageal squamous cell carcinoma and its effect on biological characteristics of esophageal cancer cells [J]. China Oncology, 2020, 30(9): 674-681. |
[12] | WEI Lirong , TENG Xiaoyan , XIA Qianlin , DU Yuzhen . STC1 induces epithelial-mesenchymal transition to promote invasion and migration of lung cancer cells [J]. China Oncology, 2020, 30(7): 497-504. |
[13] | WANG Xiaoqin, FU Xinlei, MA Ruyue, YANG Lina, CHEN Yaping, ZHANG Liwen. Sema3A regulates metastasis through epithelial-mesenchymal transition/matrix metalloproteinase-2 in epithelial ovarian cancer [J]. China Oncology, 2020, 30(6): 428-434. |
[14] | SHEN Xuefang, HUA Qing, WANG Jing, XU Pingbo. EMT-TFs are predictors in lung cancer diagnosis and prognosis [J]. China Oncology, 2020, 30(4): 284-292. |
[15] | KANG Qingjie, XIANG Zheng. Glioma-associated oncogene homologue 2 promotes epithelial-mesenchymal transition in colon cancer cell line SW620 [J]. China Oncology, 2020, 30(4): 254-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd