China Oncology ›› 2022, Vol. 32 ›› Issue (12): 1210-1217.doi: 10.19401/j.cnki.1007-3639.2022.12.009
• Article • Previous Articles Next Articles
ZHANG Longfu1,2(
), LIU Jie2, NI Zheng3, LU Xinyuan4, HU Bin1, WANG Hao5, FENG Mingxiang5, ZHANG Yong2(
)
Received:2022-09-10
Revised:2022-11-05
Online:2022-12-30
Published:2023-02-02
Contact:
ZHANG Yong
Share article
CLC Number:
ZHANG Longfu, LIU Jie, NI Zheng, LU Xinyuan, HU Bin, WANG Hao, FENG Mingxiang, ZHANG Yong. Development and validation of a nomogram for predicting spread through air spaces in stage ⅠA lung adenocarcinoma[J]. China Oncology, 2022, 32(12): 1210-1217.
Tab. 1
Clinical and CT characteristics of the patients"
| Characteristics | Positive (N=87) | Negative (N=508) | P value | Characteristics | Positive (N=87) | Negative (N=508) | P value | |
|---|---|---|---|---|---|---|---|---|
| Age/year | <0.001 | CTR | <0.001 | |||||
| <65 | 47 | 340 | CTR≤0.50 | 3 | 324 | |||
| ≥65 | 40 | 168 | 0.50<CTR≤0.75 | 12 | 60 | |||
| Gender | <0.001 | 0.75<CTR≤1.00 | 72 | 124 | ||||
| Male | 50 | 182 | Emphysema | <0.001 | ||||
| Female | 37 | 326 | Absent | 63 | 451 | |||
| Smoke | <0.001 | Present | 24 | 57 | ||||
| Ever | 44 | 89 | Lobulation | <0.001 | ||||
| Never | 43 | 419 | Absent | 1 | 179 | |||
| CEA | 0.002 | Present | 86 | 329 | ||||
| Normal | 76 | 488 | Spiculation | <0.001 | ||||
| High | 11 | 20 | Absent | 11 | 365 | |||
| Lesion location | 0.337 | Present | 76 | 143 | ||||
| Upper and middle lobe | 54 | 342 | Pleural retraction | 0.124 | ||||
| Lower lobe | 33 | 166 | Absent | 43 | 296 | |||
| Nodule pattern | <0.001 | Present | 44 | 212 | ||||
| Pure GGN | 1 | 97 | Vacuole sign | 0.853 | ||||
| Mixed GGN | 28 | 335 | Absent | 57 | 338 | |||
| Solid | 58 | 76 | Present | 30 | 170 | |||
| Tumor sizeD/cm | 0.007 | Vascular change | 0.095 | |||||
| D≤1 | 5 | 83 | Normal | 8 | 82 | |||
| 1<D≤2 | 49 | 296 | Convergent | 79 | 426 | |||
| 1<D≤3 | 33 | 129 | Nodule-pleural types | 0.160 | ||||
| No connection | 57 | 292 | ||||||
| Attachment | 30 | 216 |
Tab. 2
Univariate logistic regression analysis for STAS as the dependent variable"
| Variable | OR | 95% CI | P value | Variable | OR | 95% CI | P value | |
|---|---|---|---|---|---|---|---|---|
| Age/year | CTR | |||||||
| <65 | 1.000 | - | - | CTR≤0.50 | 1.000 | - | - | |
| ≥65 | 1.722 | 1.086-2.729 | 0.021 | 0.50<CTR≤0.75 | 21.599 | 5.917-78.845 | <0.001 | |
| Gender | 0.75<CTR≤1.00 | 62.709 | 19.398-202.721 | <0.001 | ||||
| Female | 1.000 | - | - | Emphysema | ||||
| Male | 2.420 | 1.524-3.842 | <0.001 | Absent | 1.000 | - | - | |
| Smoke | Present | 3.014 | 1.747-5.197 | <0.001 | ||||
| Never | 1.000 | - | - | Lobulation | ||||
| Ever | 4.817 | 2.985-7.773 | <0.001 | Absent | 1.000 | - | - | |
| CEA | Present | 46.790 | 6.462-338.792 | <0.001 | ||||
| Normal | 1.000 | - | - | Spiculation | ||||
| High | 3.531 | 1.627-7.661 | 0.001 | Absent | 1.000 | - | - | |
| Lesion location | Present | 17.635 | 9.103-34.160 | <0.001 | ||||
| Lower lobe | 1.000 | - | - | Pleural retraction | ||||
| Upper and middle lobe | 0.794 | 0.495-1.272 | 0.338 | Absent | 1.000 | - | - | |
| Nodule pattern | Present | 1.428 | 0.905-2.253 | 0.125 | ||||
| Pure GGN | 1.000 | - | - | Vacuole sign | ||||
| Mixed GGN | 8.107 | 1.089-60.352 | 0.041 | Absent | 1.000 | - | - | |
| Solid | 74.026 | 10.023-546.687 | <0.001 | Present | 1.046 | 0.648-1.689 | 0.853 | |
| Tumor sizeD/cm | Vascular change | |||||||
| D≤1 | 1.000 | - | - | Normal | 1.000 | - | - | |
| 1<D≤2 | 2.740 | 1.061-7.118 | 0.037 | Convergent | 1.900 | 0.884-4.083 | 0.100 | |
| 2<D≤3 | 4.246 | 1.593-11.316 | 0.004 | Nodule-pleural types | ||||
| No connection | 1.000 | - | - | |||||
| Attachment | 0.711 | 0.442-1.145 | 0.161 |
Tab. 3
Multivariable logistic regression analysis for STAS as the dependent variable"
| Variable | OR | 95% CI | P value |
|---|---|---|---|
| Age/year | |||
| <65 | 1.000 | — | — |
| ≥65 | 1.095 | 0.606-1.977 | 0.763 |
| Gender | |||
| Female | 1.000 | — | — |
| Male | 0.631 | 0.221-1.8 | 0.390 |
| Smoke | |||
| Never | 1.000 | — | — |
| Ever | 2.460 | 0.870-6.949 | 0.089 |
| CEA | |||
| Normal | 1.000 | — | — |
| High | 1.916 | 0.693-5.296 | 0.210 |
| Nodule pattern | |||
| Pure GGN | 1.000 | — | — |
| Mixed GGN | 0.285 | 0.022-3.568 | 0.330 |
| Solid | 0.679 | 0.041-8.108 | 0.685 |
| Tumor sizeD/cm | |||
| D≤1 | 1.000 | — | — |
| 1<D≤2 | 1.004 | 0.311- 3.238 | 0.994 |
| 2<D≤3 | 0.923 | 0.274- 3.104 | 0.897 |
| CTR | |||
| CTR≤0.50 | 1.000 | — | — |
| 0.50<CTR≤0.75 | 16.955 | 3.579- 80.309 | <0.001 |
| 0.75<CTR≤1.00 | 20.793 | 4.383-98.636 | <0.001 |
| Emphysema | |||
| Absent | 1.000 | — | — |
| Present | 0.851 | 0.384- 1.882 | 0.691 |
| Lobulation | |||
| Absent | 1.000 | — | — |
| Present | 8.156 | 1.021-65.099 | 0.048 |
| Spiculation | |||
| Absent | 1.000 | — | — |
| Present | 5.258 | 2.506-11.032 | <0.001 |
| [1] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2015[J]. CA A Cancer J Clin, 2015, 65(1): 5-29.
doi: 10.3322/caac.21254 |
| [2] | ZHENG R S, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. |
| [3] |
ABERLE D R, BROWN K. Lung cancer screening with CT[J]. Clin Chest Med, 2008, 29(1): 1-14, v.
doi: 10.1016/j.ccm.2007.12.001 pmid: 18267181 |
| [4] |
SUZUKI K, WATANABE S I, WAKABAYASHI M, et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer[J]. J Thorac Cardiovasc Surg, 2022, 163(1): 289-301.e2.
doi: 10.1016/j.jtcvs.2020.09.146 |
| [5] |
SAJI H, OKADA M, TSUBOI M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial[J]. Lancet, 2022, 399(10335): 1607-1617.
doi: 10.1016/S0140-6736(21)02333-3 |
| [6] |
MAEDA R, YOSHIDA J, ISHII G, et al. Long-term outcome and late recurrence in patients with completely resected stage ⅠA non-small cell lung cancer[J]. J Thorac Oncol, 2010, 5(8): 1246-1250.
doi: 10.1097/JTO.0b013e3181e2f247 |
| [7] |
KADOTA K, KUSHIDA Y, KAGAWA S, et al. Limited resection is associated with a higher risk of locoregional recurrence than lobectomy in stage Ⅰ lung adenocarcinoma with tumor spread through air spaces[J]. Am J Surg Pathol, 2019, 43(8): 1033-1041.
doi: 10.1097/PAS.0000000000001285 |
| [8] |
TRAVIS W D, BRAMBILLA E, NICHOLSON A G, et al. The 2015 World Health Organization classification of lung tumors[J]. J Thorac Oncol, 2015, 10(9): 1243-1260.
doi: 10.1097/JTO.0000000000000630 |
| [9] |
EGUCHI T, KAMEDA K, LU S H, et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis[J]. J Thorac Oncol, 2019, 14(1): 87-98.
doi: 10.1016/j.jtho.2018.09.005 |
| [10] |
REN Y J, XIE H K, DAI C Y, et al. Prognostic impact of tumor spread through air spaces in sublobar resection for ⅠA lung adenocarcinoma patients[J]. Ann Surg Oncol, 2019, 26(6): 1901-1908.
doi: 10.1245/s10434-019-07296-w |
| [11] |
KIM S K, KIM T J, CHUNG M J, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831-840.
doi: 10.1148/radiol.2018180431 pmid: 30179108 |
| [12] |
TOYOKAWA G, YAMADA Y, TAGAWA T, et al. Computed tomography features of resected lung adenocarcinomas with spread through air spaces[J]. J Thorac Cardiovasc Surg, 2018, 156(4): 1670-1676.e4.
doi: S0022-5223(18)31513-7 pmid: 29961590 |
| [13] |
BASSI M, RUSSOMANDO A, VANNUCCI J, et al. Role of radiomics in predicting lung cancer spread through air spaces in a heterogeneous dataset[J]. Transl Lung Cancer Res, 2022, 11(4): 560-571.
doi: 10.21037/tlcr-21-895 |
| [14] | 江长思, 罗燕, 唐雪, 等. 基于CT机器学习模型预测肺腺癌气腔播散[J]. 中国医学影像技术, 2020, 36(12): 1834-1838. |
| JIANG C S, LUO Y, TANG X, et al. CT-based machine learning model in prediction of spread through air space of lung adenocarcinoma[J]. Chin J Med Imaging Technol, 2020, 36(12): 1834-1838. | |
| [15] |
CHEN Y X, JIANG C S, KANG W Y, et al. Development and validation of a CT-based nomogram to predict spread through air space (STAS) in peripheral stage ⅠA lung adenocarcinoma[J]. Jpn J Radiol, 2022, 40(6): 586-594.
doi: 10.1007/s11604-021-01240-3 |
| [16] |
SHIONO S, YANAGAWA N. Spread through air spaces is a predictive factor of recurrence and a prognostic factor in stage Ⅰ lung adenocarcinoma[J]. Interact Cardiovasc Thorac Surg, 2016, 23(4): 567-572.
doi: 10.1093/icvts/ivw211 |
| [17] |
DAI C Y, XIE H K, SU H, et al. Tumor spread through air spaces affects the recurrence and overall survival in patients with lung adenocarcinoma >2 to 3 cm[J]. J Thorac Oncol, 2017, 12(7): 1052-1060.
doi: 10.1016/j.jtho.2017.03.020 |
| [18] |
MANTOVANI S, PERNAZZA A, BASSI M, et al. Prognostic impact of spread through air spaces in lung adenocarcinoma[J]. Interact Cardiovasc Thorac Surg, 2022, 34(6): 1011-1015.
doi: 10.1093/icvts/ivab289 |
| [19] |
ZHOU F, VILLALBA J A, SAYO T M S, et al. Assessment of the feasibility of frozen sections for the detection of spread through air spaces (STAS) in pulmonary adenocarcinoma[J]. Mod Pathol, 2022, 35(2): 210-217.
doi: 10.1038/s41379-021-00875-x |
| [20] |
MEDINA M A, ONKEN A M, DE MARGERIE-MELLON C, et al. Preoperative bronchial cytology for the assessment of tumor spread through air spaces in lung adenocarcinoma resection specimens[J]. Cancer Cytopathol, 2020, 128(4): 278-286.
doi: 10.1002/cncy.22243 pmid: 32012490 |
| [21] |
JIANG C S, LUO Y, YUAN J L, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(7): 4050-4057.
doi: 10.1007/s00330-020-06694-z pmid: 32112116 |
| [1] | HUANG Haozhe, CHEN Hong, ZHENG Dezhong, CHEN Chao, WANG Ying, XU Lichao, WANG Yaohui, HE Xinhong, YANG Yuanyuan, LI Wentao. A CT-based radiomics nomogram for predicting local tumor progression of colorectal cancer lung metastases treated with radiofrequency ablation [J]. China Oncology, 2024, 34(9): 857-872. |
| [2] | JIA Liqing, GE Xiaolu, JIANG Lin, ZHOU Xiaoyan. Effects of lncRNA PKD2-2-3 on cell proliferation, clone formation, migration, and invasion of lung adenocarcinoma [J]. China Oncology, 2023, 33(8): 717-725. |
| [3] | DONG Hao, QIU Yonggang, WANG Xinbin, YANG Junjie, LOU Cuncheng, YIN Lekang, YE Xiaodan. Predictive value of logistic regression model based on high-resolution CT signs for high-grade pattern in stage ⅠA lung adenocarcinoma [J]. China Oncology, 2023, 33(8): 768-775. |
| [4] | LIU Xiaoli, CHAI Wenjun, SUN Lei, YAN Mingxia, PAN Hongyu, SUN Yuexi. Analysis of differential splicing gene by regulation of splicing regulatory protein KHSRP in lung adenocarcinoma [J]. China Oncology, 2023, 33(7): 637-645. |
| [5] | MU Jiaqian, TENG Xiaoyan, WEI Lirong, QIU Rong, GUI Pengcheng, DU Yuzhen. The role and application value of integrin β3 in bone metastasis of lung adenocarcinoma [J]. China Oncology, 2022, 32(4): 351-356. |
| [6] | ZHU Haipeng, HU Jun, JIANG Min, CAI Ruonan, WANG Junqiao, LI Li. A study on mechanism of GOLM1 regulating PI3K/AKT/mTOR signaling pathway to promote proliferation, invasion and migration of lung adenocarcinoma cells [J]. China Oncology, 2022, 32(3): 207-217. |
| [7] | WANG Zimao, CAO Yuan, WANG Qiying. Construction and validation of the survival prediction model for patients with cutaneous spindle cell melanoma [J]. China Oncology, 2022, 32(3): 234-242. |
| [8] | HOU Qinghua, ZHONG Yanfeng, LIU Linzhuang, WU Liusheng, LIU Jixian. Expression, prognostic value of CBX3 in lung adenocarcinoma and its effect on biological behavior of cancer cells [J]. China Oncology, 2022, 32(2): 152-160. |
| [9] | MA Yifei , LIANG Xinjun , WEI Shaozhong . Prognostic value of inflammatory and immune markers in resectable colorectal cancer [J]. China Oncology, 2021, 31(9): 845-851. |
| [10] | HU Guannan , CHEN Lei , ZHOU Liangping , ZHOU Zhengrong . A case report of pulmonary malignant melanoma complicated with lung adenocarcinoma and literature review [J]. China Oncology, 2021, 31(7): 647-650. |
| [11] | HU Yaqiong , BAI Jun , CHEN Lin , CHEN Xinlu , ZHANG Liping , ZHOU Dandan , WANG Yu , YIN Chonggao , LI Hongli , LIU Yuqing . miR-625-5p promotes proliferation and invasion of lung adenocarcinoma by targeting PRKACA [J]. China Oncology, 2021, 31(6): 447-454. |
| [12] | PENG Zishan, KONG Hui, BAO Zhen, ZHAO Hongxing, LIU Xin, LU Shaohua. Clinicopathological analysis of 83 cases of multifocal lung adenocarcinoma [J]. China Oncology, 2021, 31(5): 408-418. |
| [13] | ZENG Feng , LI Dan , SHAO Xinxin , ZHANG Nengying , CHEN Xinghan , CHENG Xiaoming . Prognostic nomogram for elderly breast cancer patients with 1-2 positive nodes who underwent mastectomy and different axillary surgeries: a SEER-based study [J]. China Oncology, 2021, 31(4): 323-329. |
| [14] | SHI Maolin , BAI Yudi , WANG Chao , LI Siqi , ZHOU Daijun , PENG Jingjing , SUN Feifan , LI Dong , ZHANG Tao . Effect of PD-L1 expression on the efficacy of pemetrexed-based chemotherapy in patients with advanced lung adenocarcinoma and its mechanism [J]. China Oncology, 2021, 31(4): 308-316. |
| [15] | WANG Xiaodong , ZHOU Dandan , ZHANG Liping , ZHENG Quan , MU Qingjie , YIN Chonggao , LI Hongli . FAM83A is highly expressed in lung adenocarcinoma tissues and promotes invasion and metastasis of lung adenocarcinoma cells [J]. China Oncology, 2020, 30(8): 586-592. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd