China Oncology ›› 2023, Vol. 33 ›› Issue (4): 342-353.doi: 10.19401/j.cnki.1007-3639.2023.04.004
• Article • Previous Articles Next Articles
Received:
2022-12-08
Revised:
2023-03-02
Online:
2023-04-30
Published:
2023-05-15
Contact:
CHEN Junxia
Share article
CLC Number:
CHEN Hong, CHEN Junxia. Effect of hsa_circ_0001573 on biological behaviors of breast cancer cells and its molecular mechanism[J]. China Oncology, 2023, 33(4): 342-353.
Tab. 1
Correlation between the relative expression of hsa_circ_0001573 and clinicopathological features in 40 breast cancer patients"
Clinicopathological features | All cases | Relative expression of hsa_circ_0001573 | Chi-square | P value | |
---|---|---|---|---|---|
Low (n=15) | High (n=25) | ||||
Age/year | 2.373 | 0.123 | |||
<55 | 26 | 12 | 14 | ||
≥55 | 14 | 3 | 11 | ||
Grade | 3.175 | 0.075 | |||
Ⅱ | 12 | 7 | 5 | ||
Ⅲ | 28 | 8 | 20 | ||
T stage | 5.184 | 0.023 | |||
T1 | 15 | 9 | 6 | ||
T2-3 | 25 | 6 | 19 | ||
N stage | 7.111 | 0.008 | |||
N0 | 24 | 13 | 11 | ||
N1-3 | 16 | 2 | 14 | ||
TNM stage | 6.222 | 0.013 | |||
Ⅰ | 12 | 8 | 4 | ||
Ⅱ/Ⅲ | 28 | 7 | 21 |
Fig. 2
Expression and localization of hsa_circ_0001573 A: Relative expression of hsa_circ_0001573 in cell lines; ***: P<0.001, compared with MCF-10A; B: Relative expression of hsa_circ_0001573 in 40 cases of breast cancer tissues; *: P<0.05, compared with paracancerous tissues; C: FISH detection (×400)."
Fig. 9
Expression of c-myc was enhanced by the interaction of hsa_circ_0001573 with GNB4 A: RNA pull down; B: FISH-IF (×400); C: The efficiency after transfection with overexpressed GNB4 plasmid or sh-GNB4; D: Relative expression of c-myc after transfection with overexpressed GNB4 plasmid or sh-GNB4; E, F: Western blot; ***: P<0.001, compared with mock or sh-NC; **: P<0.01, compared with mock or sh-NC."
[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
doi: 10.3322/caac.v72.1 |
[2] |
BUTTI R, DAS S, GUNASEKARAN V P, et al. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges[J]. Mol Cancer, 2018, 17(1): 34.
doi: 10.1186/s12943-018-0797-x pmid: 29455658 |
[3] |
RAGAN C, GOODALL G J, SHIROKIKH N E, et al. Insights into the biogenesis and potential functions of exonic circular RNA[J]. Sci Rep, 2019, 9(1): 2048.
doi: 10.1038/s41598-018-37037-0 pmid: 30765711 |
[4] |
MO D D, LI X P, RAABE C A, et al. A universal approach to investigate circRNA protein coding function[J]. Sci Rep, 2019, 9(1): 11684.
doi: 10.1038/s41598-019-48224-y pmid: 31406268 |
[5] |
GUO X Q, JIN W, CHANG C F, et al. Large-scale quantitative genomics analyzes the circRNA expression profile and identifies the key circRNA in regulating cell proliferation during the proliferation phase of rat LR[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2957-2966.
doi: 10.1080/21691401.2019.1640710 pmid: 31315467 |
[6] |
WANG H L, XIAO Y, WU L, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis[J]. Int J Oncol, 2018, 52(3): 743-754.
doi: 10.3892/ijo.2018.4265 pmid: 29431182 |
[7] |
WANG X H, CHEN M H, FANG L. Hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3[J]. Mol Ther Nucleic Acids, 2021, 26: 122-134.
doi: 10.1016/j.omtn.2021.07.003 |
[8] |
WANG X S, XING L, YANG R, et al. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC[J]. Mol Cancer, 2021, 20(1): 91.
doi: 10.1186/s12943-021-01383-x pmid: 34116677 |
[9] |
WANG B, LI D P, RODRIGUEZ-JUAREZ R, et al. A suppressive role of guanine nucleotide-binding protein subunit beta-4 inhibited by DNA methylation in the growth of anti-estrogen resistant breast cancer cells[J]. BMC Cancer, 2018, 18(1): 817.
doi: 10.1186/s12885-018-4711-0 pmid: 30103729 |
[10] |
JI W F, ZHANG W W, WANG X, et al. C-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis[J]. Cell Death Dis, 2020, 11(9): 760.
doi: 10.1038/s41419-020-02980-2 pmid: 32934206 |
[11] | POWER E J, CHIN M L, HAQ M M. Breast cancer incidence and risk reduction in the hispanic population[J]. Cureus, 2018, 10(2): e2235. |
[12] |
WEI C R, WANG Y, LI X Q. The role of Hippo signal pathway in breast cancer metastasis[J]. Onco Targets Ther, 2018, 11: 2185-2193.
doi: 10.2147/OTT |
[13] |
LI X, YANG L, CHEN L L. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3): 428-442.
doi: S1097-2765(18)30509-4 pmid: 30057200 |
[14] |
CHENG D, WANG J, DONG Z G, et al. Cancer-related circular RNA: diverse biological functions[J]. Cancer Cell Int, 2021, 21(1): 11.
doi: 10.1186/s12935-020-01703-z pmid: 33407501 |
[15] |
LI J, GAO X Y, ZHANG Z Q, et al. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502-5p/KRAS and IGF2BP2/Myc axes[J]. Mol Cancer, 2021, 20(1): 138.
doi: 10.1186/s12943-021-01444-1 pmid: 34696797 |
[16] |
MONTALTO F I, DE AMICIS F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma[J]. Cells, 2020, 9(12): 2648.
doi: 10.3390/cells9122648 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd