China Oncology ›› 2024, Vol. 34 ›› Issue (8): 734-744.doi: 10.19401/j.cnki.1007-3639.2024.08.003
• Article • Previous Articles Next Articles
LI Ya(), LIU Hui, REN Jingjing, LI Xiaofu, ZHI Yanfang(
)
Received:
2024-01-16
Revised:
2024-04-16
Online:
2024-08-30
Published:
2024-09-10
Share article
CLC Number:
LI Ya, LIU Hui, REN Jingjing, LI Xiaofu, ZHI Yanfang. Early diagnostic value of methylation in promoter region of FAM19A4, PAX1 and miRNA124-2 in cervical lesions[J]. China Oncology, 2024, 34(8): 734-744.
Tab. 1
Patients’ age, HPV, cytology and pathology information"
Group | Pathological diagnosis | Total | x2 value | P value | |||
---|---|---|---|---|---|---|---|
NILM | LSIL | HSIL | SCC | ||||
Age/year | 37.00±11.58 | 40.90±12.27 | 42.80±9.84 | 53.40±12.69* | 42.22±11.59 | 8.901 | 0.000 |
HPV | |||||||
Positive | 47.6% (20/42) | 89.3% (25/28) | 97.2% (35/36) | 91.3% (21/23) | 78.3% (101/129) | 35.126 | 0.000 |
Negative | 52.4% (22/42) | 10.7% (3/28) | 2.8% (1/36) | 8.7% (2/23) | 21.7% (28/129) | ||
TCT | |||||||
NILM | 42 | 42 | |||||
ASC-US | 9 | 3 | 12 | ||||
ASC-H | 2 | 3 | 5 | ||||
LSIL | 19 | 2 | 21 | ||||
HSIL | 29 | 11 | 40 | ||||
SCC | 9 | 9 |
Tab. 2
Detection of FAM19A4, PAX1, and miRNA124-2 gene methylation in different grades of cervical lesions"
Gene | NILM (n=42) | LSIL (n=28) | HSIL (n=36) | SCC (n=23) | χ2 value | P value |
---|---|---|---|---|---|---|
PAX1 | 21.4% (9/42) | 35.7% (10/28) | 80.5% (29/36) | 100.0% (23/23) | 51.659 | 0.000 |
miRNA124-2 | 28.5% (12/42) | 29.6% (8/27) | 71.8% (23/32) | 100.0% (23/23) | 40.975 | 0.000 |
FAM19A4 | 45.2% (19/42) | 51.8% (14/27) | 81.2% (26/32) | 100.0% (23/23) | 25.688 | 0.000 |
Tab. 3
Combined detection of FAM19A4, PAX1, and miRNA124-2 gene methylation in different cervical lesions"
Gene | NILM (n=42) | LSIL (n=27) | HSIL (n=32) | SCC (n=23) | χ2 value | P value |
---|---|---|---|---|---|---|
P+miR | 38.1% (16/42) | 44.4% (12/27) | 84.3% (27/32) | 100% (23/23) | 34.906 | 0.000 |
P+F | 47.6% (20/42) | 59.3% (16/27) | 87.5% (28/32) | 100% (23/23) | 26.104 | 0.000 |
F+miR | 54.7% (23/42) | 59.3% (16/27) | 81.2% (26/32) | 100% (23/23) | 18.201 | 0.000 |
P+F+miR | 57.1% (24/42) | 66.7% (18/27) | 87.5% (28/32) | 100% (23/23) | 18.476 | 0.000 |
Tab. 4
Sensitivity, specificity, and overall concordance rate of PAX1, FAM19A4, miRNA124-2, and their combination for the diagnosis of HSIL"
Item | FAM19A4 | PAX1 | miR124-2 | P+F | P+miR | miR+F | P+F+miR |
---|---|---|---|---|---|---|---|
Sensitivity | 81.25% | 80.56% | 71.88% | 87.50% | 84.38% | 81.25% | 87.50% |
Specificity | 81.25% | 78.57% | 71.43% | 52.38% | 61.90% | 45.24% | 42.86% |
Total coincidence rate | 66.22% | 79.49% | 71.62% | 67.57% | 71.62% | 60.81% | 62.16% |
Tab. 5
Sensitivity, specificity, and overall concordance rate of FAM19A4, PAX1, miRNA124-2, and their combination for the diagnosis of HSIL+"
Item | PAX1 | FAM19A4 | miR124-2 | P+F | P+miR | miR+F | P+F+miR |
---|---|---|---|---|---|---|---|
Sensitivity | 88.14% | 89.09% | 83.64% | 92.73% | 90.91% | 89.09% | 92.73% |
Specificity | 72.86% | 52.17% | 71.01% | 47.83% | 59.42% | 43.48% | 39.13% |
Total coincidence rate | 79.84% | 68.55% | 76.61% | 67.74% | 73.39% | 63.71% | 62.90% |
Tab. 6
Sensitivity, specificity, and overall concordance rate of FAM19A4, PAX1, miRNA124-2, and their combination for the diagnosis of SCC"
Item | PAX1 | FAM19A4 | miR124-2 | P+F | P+miR | miR+F | P+F+miR |
---|---|---|---|---|---|---|---|
Sensitivity | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
Specificity | 78.57% | 54.76% | 71.43% | 52.38% | 61.90% | 45.24% | 42.86% |
Total coincidence rate | 86.15% | 70.77% | 81.54% | 69.23% | 75.38% | 64.62% | 63.08% |
Tab. 7
Diagnostic value of FAM19A4, PAX1 and miRNA124-2 gene methylation for SCC"
Item | AUC | 95% CI | Cut-off value | Youden index | Sensitivity | Specificity |
---|---|---|---|---|---|---|
FAM19A4 | 0.950 | 0.912-0.989 | 24.9 | 0.854 | 0.941 | 0.913 |
miRNA124-2 | 0.907 | 0.854-0.960 | 27.0 | 0.755 | 0.842 | 0.913 |
PAX1 | 0.928 | 0.881-0.975 | 26.2 | 0.848 | 0.891 | 0.957 |
TCT | 0.731 | 0.647-0.818 | 25.0 | 0.463 | 0.659 | 0.804 |
Tab. 8
Combined diagnostic value of FAM19A4, PAX1, and miRNA124-2 gene methylation for SCC"
Item | AUC | 95% CI | Cut-off value | Youden index | Sensitivity | Specificity |
---|---|---|---|---|---|---|
P+F | 0.950 | 0.912-0.988 | - | 0.854 | 0.941 | 0.913 |
P+miR | 0.929 | 0.882-0.976 | - | 0.848 | 0.957 | 0.891 |
F+miR | 0.951 | 0.913-0.989 | - | 0.854 | 0.942 | 0.912 |
P+F+miR | 0.952 | 0.915-0.990 | - | 0.851 | 1.000 | 0.851 |
Tab. 9
Diagnostic value of FAM19A4, PAX1, and miRNA124-2 gene methylation for HSIL+"
Item | AUC | 95% CI | Cut-off value | Youden index | Sensitivity | Specificity |
---|---|---|---|---|---|---|
FAM19A4 | 0.893 | 0.870-0.959 | 22.4 | 0.728 | 0.926 | 0.802 |
mi-R124-2 | 0.889 | 0.827-0.951 | 25.3 | 0.713 | 0.913 | 0.800 |
PAX1 | 0.925 | 0.826-0.980 | 22.0 | 0.801 | 0.928 | 0.873 |
Tab. 10
Combined diagnostic value of FAM19A4, PAX1, and miRNA124-2 gene methylation for HSIL+"
Item | AUC | 95% CI | Cut-off value | Youden index | Sensitivity | Specificity |
---|---|---|---|---|---|---|
P+F | 0.930 | 0.879-0.981 | - | 0.828 | 0.957 | 0.871 |
P+miR | 0.928 | 0.875-0.981 | - | 0.848 | 0.957 | 0.891 |
F+miR | 0.895 | 0.832-0.959 | - | 0.833 | 0.976 | 0.857 |
P+F+miR | 0.928 | 0.876-0.980 | - | 0.818 | 1.000 | 0.818 |
[1] | TORRES-ROMAN J S, RONCEROS-CARDENAS L, VALCARCEL B, et al. Cervical cancer mortality among young women in Latin America and the Caribbean: trend analysis from 1997 to 2030[J]. BMC Public Health, 2022, 22(1): 113. |
[2] |
BUSKWOFIE A, DAVID-WEST G, CLARE C A. A review of cervical cancer: incidence and disparities[J]. J Natl Med Assoc, 2020, 112(2): 229-232.
doi: S0027-9684(20)30043-2 pmid: 32278478 |
[3] | LI B H, ZHANG L, ZHAO J G, et al. The value of cytokine levels in triage and risk prediction for women with persistent high-risk human papilloma virus infection of the cervix[J]. Infect Agent Cancer, 2019, 14: 16. |
[4] | EL ALIANI A, EL-ABID H, EL MALLALI Y, et al. Association between gene promoter methylation and cervical cancer development: global distribution and a meta-analysis[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30(3): 450-459. |
[5] | LIANG L A, EINZMANN T, FRANZEN A, et al. Cervical cancer screening: comparison of conventional pap smear test, liquid-based cytology, and human papillomavirus testing as stand-alone or cotesting strategies[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30(3): 474-484. |
[6] |
JI W T, LOU W H, HONG Z B, et al. Genomic amplification of HPV, h-TERC and c-MYC in liquid-based cytological specimens for screening of cervical intraepithelial neoplasia and cancer[J]. Oncol Lett, 2019, 17(2): 2099-2106.
doi: 10.3892/ol.2018.9825 pmid: 30675277 |
[7] |
VILLANUEVA L, ÁLVAREZ-ERRICO D, ESTELLER M. The contribution of epigenetics to cancer immunotherapy[J]. Trends Immunol, 2020, 41(8): 676-691.
doi: S1471-4906(20)30126-5 pmid: 32622854 |
[8] | HAINES K, XU F, VAN ARSDALE A, et al. Investigation of perturbation of DNMT and TET enzymes in endometrial cancer (308)[J]. Gynecol Oncol, 2022, 166: S161-S162. |
[9] | KELLY H, BENAVENTE Y, PAVON M A, et al. Performance of DNA methylation assays for detection of high-grade cervical intraepithelial neoplasia (CIN2+): a systematic review and meta-analysis[J]. Br J Cancer, 2019, 121(11): 954-965. |
[10] | FANG C, WANG S Y, LIOU Y L, et al. The promising role of PAX1 (aliases: HUP48, OFC2) gene methylation in cancer screening[J]. Mol Genet Genomic Med, 2019, 7(3): e506. |
[11] | CHENG S J, CHANG C F, KO H H, et al. Hypermethylated ZNF582 and PAX1 genes in oral scrapings collected from cancer-adjacent normal oral mucosal sites are associated with aggressive progression and poor prognosis of oral cancer[J]. Oral Oncol, 2017, 75: 169-177. |
[12] | SMOLARZ B, DURCZYŃSKI A, ROMANOWICZ H, et al. The role of microRNA in pancreatic cancer[J]. Biomedicines, 2021, 9(10): 1322. |
[13] | The clinical application value of FAM19A4/mir124-2 methy lation test in hrHPV-positive women[J]. Cancer Cell Res, 2022, 9(33). |
[14] | KUMAR R, PAUL A M, RAMESHWAR P, et al. Epigenetic dysregulation at the crossroad of women’s cancer[J]. Cancers, 2019, 11(8): 1193. |
[15] | XU W X, XU M Y, WANG L L, et al. Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers[J]. Signal Transduct Target Ther, 2019, 4: 55. |
[16] |
GUO M Z, PENG Y J, GAO A A, et al. Epigenetic heterogeneity in cancer[J]. Biomark Res, 2019, 7: 23.
doi: 10.1186/s40364-019-0174-y pmid: 31695915 |
[17] |
LI N, HU Y J, ZHANG X Y, et al. DNA methylation markers as triage test for the early identification of cervical lesions in a Chinese population[J]. Int J Cancer, 2021, 148(7): 1768-1777.
doi: 10.1002/ijc.33430 pmid: 33300604 |
[18] | DVORSKÁ D, BRANÝ D, NAGY B, et al. Aberrant methylation status of tumour suppressor genes in ovarian cancer tissue and paired plasma samples[J]. Int J Mol Sci, 2019, 20(17): 4119. |
[19] | 周俏苗, 汪洪林, 黄海燕, 等. MiR-124-3p靶向调控MAPK 14对子痫前期大鼠胎盘滋养层细胞增殖及侵袭的影响[J]. 中国比较医学杂志, 2020, 30(6): 1-9. |
ZHOU Q M, WANG H L, HUANG H Y, et al. MiR-124-3p affects proliferation and migration in preeclampsia pathogenesis by targeting MAPK 14[J]. Chin J Comp Med, 2020, 30(6): 1-9. | |
[20] | JIA X Q, WANG X, GUO X R, et al. MicroRNA-124: an emerging therapeutic target in cancer[J]. Cancer Med, 2019, 8(12): 5638-5650. |
[21] |
SHIMIZU T, SUZUKI H, NOJIMA M, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer[J]. Eur Urol, 2013, 63(6): 1091-1100.
doi: 10.1016/j.eururo.2012.11.030 pmid: 23200812 |
[22] |
ADCOCK R, NEDJAI B, LORINCZ A T, et al. DNA methylation testing with S5 for triage of high-risk HPV positive women[J]. Int J Cancer, 2022, 151(7): 993-1004.
doi: 10.1002/ijc.34050 pmid: 35477862 |
[1] | WANG Haochen, JIA Liqing, YANG Yu, WANG Qian, YU Chengli, TIAN Tian, BI Rui, TU Xiaoyu, BAI Qianming, ZHU Xiaoli, ZHOU Xiaoyan, REN Min. A study on the correlation between HPV DNA and IHC P16 expression in cervical lesions [J]. China Oncology, 2025, 35(3): 298-308. |
[2] | CHEN Yuanxiang, YU Tao, YANG Shiyu, ZENG Tao, WEI Lan, ZHANG Yan. KDM4A promotes the migration and invasion of breast cancer cell line MDA-MB-231 by downregulating BMP9 [J]. China Oncology, 2024, 34(2): 176-184. |
[3] | XU Ziqi, HU Ruizhi, LI Junjian, WANG Hongxia, SANG Youzhou. Exploring the role of methylation-driven gene IFFO1 in pancreatic adenocarcinoma diagnosis, prognosis and cellular functions [J]. China Oncology, 2024, 34(11): 998-1010. |
[4] | WANG Chuntao, GE Anxing, WU Hongyan, ZHANG Xueyan, YANG Sheng, YUAN Hongxiang, CHENG Yanping, FENG Yanlu, LU Xinyuan, LIANG Geyu. The association between cervical lesions of different grades and lncRNA HOTTIP and H19 single nucleotide polymorphisms [J]. China Oncology, 2022, 32(4): 324-334. |
[5] | ZHANG Xiaohui , LUO Jianmin , SUO Xiaohui , SUN Guofeng , LIU Hongfeng , LI Jing , NIU Guangxu . Relationship between epigenetic modification of SOCS1 and acute myeloid leukemia [J]. China Oncology, 2020, 30(8): 577-585. |
[6] | CAO Yiming, ZHU Yongxue. Screening of aberrant DNA methylation in papillary thyroid cancer [J]. China Oncology, 2019, 29(10): 780-787. |
[7] | CAO Yiming, ZHU Yongxue. Research progress of DNA methylation in thyroid cancer [J]. China Oncology, 2017, 27(4): 304-311. |
[8] | XING Hongyu, ZHU Mingyue, LI Wei, et al. Association between GSTPl gene promoter methylation and prostate cancer [J]. China Oncology, 2017, 27(11): 879-883. |
[9] | SHAN Menglin, DING Tao, ZHENG Jianghua, et al. Detection of HIC1 promoter methylation in prostate cancer using MSP and BSP methods [J]. China Oncology, 2016, 26(4): 290-296. |
[10] | WU Dan, YANG Xin, ZHU Junling, et al. Analysis of DBC1 gene promoter methylation in cervical cancer tissues of Uyghur women in Xinjiang [J]. China Oncology, 2016, 26(3): 208-214. |
[11] | HU Qiang, XIONG Hua, FANG Jingyuan. Research on similarities and differences of colorectal cancer epigenetic modifications in the Eastern and Western population [J]. China Oncology, 2016, 26(2): 182-187. |
[12] | YIN Fufen, WANG Ning, YU Xiao, et al. The roles of HPV16 E6, E7 and E6/E7 genes in STK31 promoter/exon1 methylation and expression levels in cervical cancer cell lines [J]. China Oncology, 2015, 25(9): 641-651. |
[13] | WANG Feng, WANG Rui, WANG Yanjing. ADAMTS9 protein downregulation induced by DNA promoter methylation could promote the progression of colorectal cancer [J]. China Oncology, 2015, 25(6): 446-451. |
[14] | DENG Jiaying, ZHAO Kuaile. Research of the alternative splicing gene RBFOX1 in esophageal squamous cell carcinoma [J]. China Oncology, 2015, 25(6): 401-408. |
[15] | CHEN Wei, YANG Huijuan, XU Jun et al. Quantitative analysis of LMX1A and PAX1 gene methylation in cervical cancer and cervical intraepithelial neoplasia [J]. China Oncology, 2015, 25(1): 19-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd