China Oncology ›› 2025, Vol. 35 ›› Issue (5): 485-495.doi: 10.19401/j.cnki.1007-3639.2025.05.007
• Original article • Previous Articles Next Articles
WANG Xing1,2,3,4(), XIAO Ruiling1,2,3,4, BAI Jialu1,2,3,4, JIANG Decheng1,2,3,4, ZHOU Feihan1,2,3,4, LUO Xiyuan1,2,3,4, TANG Yuemeng1,2,3,4, ZHAO Yupei1,2,3,4(
)
Received:
2024-11-21
Revised:
2025-01-25
Online:
2025-05-30
Published:
2025-06-10
Contact:
ZHAO Yupei
Supported by:
Share article
CLC Number:
WANG Xing, XIAO Ruiling, BAI Jialu, JIANG Decheng, ZHOU Feihan, LUO Xiyuan, TANG Yuemeng, ZHAO Yupei. The bidirectional selection and shared adaptation mechanisms of tumor organ-specific metastasis[J]. China Oncology, 2025, 35(5): 485-495.
Tab. 1
Genetic and pathway mutations associated with organotropism during metastasis"
Cancer type | Target organs | Genetic mutations | Altered pathways |
---|---|---|---|
Gastric cancer | Peritoneum | ELF3, CDH1 and PIGR mutation | Hippo pathway |
Lung adenocarcinoma | Brain | TP53, EGFR, CREBBP and EPHA5 mutation; TERT amplification | RAS, PI3K, Notch pathway |
Lung adenocarcinoma | Liver | CDKN2A deletion | |
Lung adenocarcinoma | Bone | MYC, YAP1 and MMP13 mutation; CDKN2A/B deletion | RAS pathway |
MSS colorectal cancer | Lung | KRAS mutation | |
Pancreatic cancer | Liver | KRAS mutation | |
Prostate cancer | Bone | AR amplification; PTEN deletion; APC mutation | |
Prostate cancer | Liver | PTEN and RB1 deletion; APC mutation | |
Prostate cancer | Brain | AR amplification | NOTCH pathway |
Prostate cancer | Lung | APC and CTNNB1 mutation | Wnt pathway |
HR+/HER2- breast cancer | Liver | ESR1 mutation | |
HR+/HER2- breast cancer | Bone | CBFB mutation | PI3K pathway |
HR+/HER2- breast cancer | Brain | MAP3K1 mutation | |
Papillary thyroid carcinoma | Bone | BRAF mutation | |
Esophageal cancer | Lung | ERBB2 amplification | |
Melanoma | Lung | NF1 mutation | |
Melanoma | Brain | PTEN mutation | PI3K pathway |
Bladder and urethral cancer | Lung | FGFR3 mutation |
[1] | PAGET S. The distribution of secondary growths in cancer of the breast[J]. Lancet, 1889, 133(3421): 571-573. |
[2] |
BIERMANN J, MELMS J C, AMIN A D, et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis[J]. Cell, 2022, 185(14): 2591-2608.e30.
doi: 10.1016/j.cell.2022.06.007 pmid: 35803246 |
[3] | MADDIPATI R, NORGARD R J, BASLAN T, et al. MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma[J]. Cancer Discov, 2022, 12(2): 542-561. |
[4] |
VAN DE HAAR J, HOES L R, ROEPMAN P, et al. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure[J]. Nat Med, 2021, 27(9): 1553-1563.
doi: 10.1038/s41591-021-01448-w pmid: 34373653 |
[5] |
HU Z, LI Z, MA Z C, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7): 701-708.
doi: 10.1038/s41588-020-0628-z pmid: 32424352 |
[6] |
BIRKBAK N J, MCGRANAHAN N. Cancer genome evolutionary trajectories in metastasis[J]. Cancer Cell, 2020, 37(1): 8-19.
doi: S1535-6108(19)30574-4 pmid: 31935374 |
[7] | KRAUß L, SCHNEIDER C, HESSMANN E, et al. Epigenetic control of pancreatic cancer metastasis[J]. Cancer Metastasis Rev, 2023, 42(4): 1113-1131. |
[8] | TEREKHANOVA N V, KARPOVA A, LIANG W W, et al. Epigenetic regulation during cancer transitions across 11 tumour types[J]. Nature, 2023, 623(7986): 432-441. |
[9] | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
[10] |
KUDO Y, HAYMAKER C, ZHANG J, et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(9): 1521-1530.
doi: S0923-7534(19)45994-2 pmid: 31987408 |
[11] | SUN L, KIENZLER J C, REYNOSO J G, et al. Immune checkpoint blockade induces distinct alterations in the microenvironments of primary and metastatic brain tumors[J]. J Clin Invest, 2023, 133(17): e169314. |
[12] | YANG J Y, LIN P, YANG M W, et al. Integrated genomic and transcriptomic analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal adenocarcinoma[J]. Genome Biol, 2021, 22(1): 4. |
[13] |
XIAO Y S, CONG M, LI J T, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation[J]. Cancer Cell, 2021, 39(3): 423-437.e7.
doi: 10.1016/j.ccell.2020.12.012 pmid: 33450198 |
[14] | NGUYEN B, FONG C, LUTHRA A, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25, 000 patients[J]. Cell, 2022, 185(3): 563-575.e11. |
[15] |
LENGEL H B, MASTROGIACOMO B, CONNOLLY J G, et al. Genomic mapping of metastatic organotropism in lung adenocarcinoma[J]. Cancer Cell, 2023, 41(5): 970-985.e3.
doi: 10.1016/j.ccell.2023.03.018 pmid: 37084736 |
[16] |
LI C, SUN Y D, YU G Y, et al. Integrated omics of metastatic colorectal cancer[J]. Cancer Cell, 2020, 38(5): 734-747.e9.
doi: 10.1016/j.ccell.2020.08.002 pmid: 32888432 |
[17] | CHEN W J, HOFFMANN A D, LIU H P, et al. Organotropism: new insights into molecular mechanisms of breast cancer metastasis[J]. NPJ Precis Oncol, 2018, 2(1): 4. |
[18] | CHEN H N, SHU Y, LIAO F, et al. Genomic evolution and diverse models of systemic metastases in colorectal cancer[J]. Gut, 2022, 71(2): 322-332. |
[19] |
SUN Y F, WU P, ZHANG Z F, et al. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma[J]. Cancer Cell, 2024, 42(1): 135-156.e17.
doi: 10.1016/j.ccell.2023.11.010 pmid: 38101410 |
[20] | AL BAKIR M, HUEBNER A, MARTÍNEZ-RUIZ C, et al. The evolution of non-small cell lung cancer metastases in TRACERx[J]. Nature, 2023, 616(7957): 534-542. |
[21] | JIANG B B, MU Q H, QIU F F, et al. Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors[J]. Nat Commun, 2021, 12(1): 6692. |
[22] | MICHIGAMI T, HIRAGA T, WILLIAMS P J, et al. The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs[J]. Breast Cancer Res Treat, 2002, 75(3): 249-258. |
[23] |
ZHUANG X Q, ZHANG H, LI X Y, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1[J]. Nat Cell Biol, 2017, 19(10): 1274-1285.
doi: 10.1038/ncb3613 pmid: 28892080 |
[24] | REN B, YANG J S, WANG C C, et al. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis[J]. J Hematol Oncol, 2021, 14(1): 120. |
[25] | WANG X, LIU X H, XIAO R L, et al. Histone lactylation dynamics: unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer[J]. Cancer Lett, 2024, 598: 217117. |
[26] | YANG J S, REN B, REN J, et al. Epigenetic reprogramming-induced guanidinoacetic acid synthesis promotes pancreatic cancer metastasis and transcription-activating histone modifications[J]. J Exp Clin Cancer Res, 2023, 42(1): 155. |
[27] | LEIBOLD J, TSANOV K M, AMOR C, et al. Somatic mouse models of gastric cancer reveal genotype-specific features of metastatic disease[J]. Nat Cancer, 2024, 5(2): 315-329. |
[28] |
BOJMAR L, ZAMBIRINIS C P, HERNANDEZ J M, et al. Multi-parametric atlas of the pre-metastatic liver for prediction of metastatic outcome in early-stage pancreatic cancer[J]. Nat Med, 2024, 30(8): 2170-2180.
doi: 10.1038/s41591-024-03075-7 pmid: 38942992 |
[29] |
ZHOU W Y, FONG M Y, MIN Y F, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell, 2014, 25(4): 501-515.
doi: 10.1016/j.ccr.2014.03.007 pmid: 24735924 |
[30] | COX T R, RUMNEY R M H, SCHOOF E M, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase[J]. Nature, 2015, 522(7554): 106-110. |
[31] | ZHANG S X, LIAO X Y, CHEN S W, et al. Large oncosome-loaded VAPA promotes bone-tropic metastasis of hepatocellular carcinoma via formation of osteoclastic pre-metastatic niche[J]. Adv Sci (Weinh), 2022, 9(31): e2201974. |
[32] |
WU Q Y, TIAN P, HE D S, et al. SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches[J]. Cell Res, 2023, 33(6): 464-478.
doi: 10.1038/s41422-023-00810-6 pmid: 37142671 |
[33] | HOSHINO A, COSTA-SILVA B, SHEN T L, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335. |
[34] | ALTEA-MANZANO P, DOGLIONI G, LIU Y W, et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling[J]. Nat Cancer, 2023, 4(3): 344-364. |
[35] |
KLOTZ R, THOMAS A, TENG T, et al. Circulating tumor cells exhibit metastatic tropism and reveal brain metastasis drivers[J]. Cancer Discov, 2020, 10(1): 86-103.
doi: 10.1158/2159-8290.CD-19-0384 pmid: 31601552 |
[36] |
YU T, WANG C Z, XIE M Y, et al. Heterogeneity of CTC contributes to the organotropism of breast cancer[J]. Biomed Pharmacother, 2021, 137: 111314.
doi: 10.1016/j.biopha.2021.111314 pmid: 33581649 |
[37] | LI S N, YANG S, SHI J J, et al. Recognition of the organ-specific mutations in metastatic breast cancer by circulating tumor cells isolated in vivo[J]. Neoplasma, 2021, 68(1): 31-39. |
[38] | ALLEN T A, ASAD D, AMU E, et al. Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential[J]. J Cell Sci, 2019, 132(17): jcs231563. |
[39] |
LIU X, TAFTAF R, KAWAGUCHI M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models[J]. Cancer Discov, 2019, 9(1): 96-113.
doi: 10.1158/2159-8290.CD-18-0065 pmid: 30361447 |
[40] |
MADDIPATI R, STANGER B Z. Pancreatic cancer metastases harbor evidence of polyclonality[J]. Cancer Discov, 2015, 5(10): 1086-1097.
doi: 10.1158/2159-8290.CD-15-0120 pmid: 26209539 |
[41] |
ULINTZ P J, GREENSON J K, WU R, et al. Lymph node metastases in colon cancer are polyclonal[J]. Clin Cancer Res, 2018, 24(9): 2214-2224.
doi: 10.1158/1078-0432.CCR-17-1425 pmid: 29203589 |
[42] |
KÜÇÜKKÖSE E, LAOUKILI J, GORELICK A N, et al. Lymphatic invasion of plakoglobin-dependent tumor cell clusters drives formation of polyclonal lung metastases in colon cancer[J]. Gastroenterology, 2023, 165(2): 429-444.e15.
doi: 10.1053/j.gastro.2023.02.047 pmid: 36906044 |
[43] |
ACETO N, BARDIA A, MIYAMOTO D T, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J]. Cell, 2014, 158(5): 1110-1122.
doi: S0092-8674(14)00927-1 pmid: 25171411 |
[44] | KWAK T J, LEE E. Rapid multilayer microfabrication for modeling organotropic metastasis in breast cancer[J]. Biofabrication, 2020, 13(1). |
[45] | ZHOU X N, LEBLEU V S, FLETCHER-SANANIKONE E, et al. Vascular heterogeneity of tight junction Claudins guides organotropic metastasis[J]. Nat Cancer, 2024, 5(9): 1371-1389. |
[46] | DE CUBA E V, KWAKMAN R, VAN EGMOND M, et al. Understanding molecular mechanisms in peritoneal dissemination of colorectal cancer: future possibilities for personalised treatment by use of biomarkers[J]. Virchows Arch, 2012, 461(3): 231-243. |
[47] |
ZAJAC O, RAINGEAUD J, LIBANJE F, et al. Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas[J]. Nat Cell Biol, 2018, 20(3): 296-306.
doi: 10.1038/s41556-017-0027-6 pmid: 29403038 |
[48] | JAKAB M, LEE K H, UVAROVSKII A, et al. Lung endothelium exploits susceptible tumor cell states to instruct metastatic latency[J]. Nat Cancer, 2024, 5(5): 716-730. |
[49] | ALBRENGUES J, SHIELDS M A, NG D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409): eaao4227. |
[50] | PRICE T T, BURNESS M L, SIVAN A, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone[J]. Sci Transl Med, 2016, 8(340): 340ra73. |
[51] | CORREIA A L, GUIMARAES J C, AUF DER MAUR P, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy[J]. Nature, 2021, 594(7864): 566-571. |
[52] | BORRELLI C, ROBERTS M, ELETTO D, et al. In vivo interaction screening reveals liver-derived constraints to metastasis[J]. Nature, 2024, 632(8024): 411-418. |
[53] | TOMONOBU N, KINOSHITA R, WAKE H, et al. Histidine-rich glycoprotein suppresses the S100A8/A9-mediated organotropic metastasis of melanoma cells[J]. Int J Mol Sci, 2022, 23(18): 10300. |
[54] | SLUITER N, DE CUBA E, KWAKMAN R, et al. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options[J]. Clin Exp Metastasis, 2016, 33(5): 401-416. |
[55] | LIN Y H, WU M H, HUANG Y H, et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 188-203. |
[56] |
RETTIG A R, GANESH K. Cancer cells hijack physiologic metabolic signals to seed liver metastasis[J]. Cancer Res, 2024, 84(10): 1548-1549.
doi: 10.1158/0008-5472.CAN-24-0835 pmid: 38502849 |
[57] | CHENG S J, WAN X Y, YANG L P, et al. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation[J]. J Exp Clin Cancer Res, 2023, 42(1): 342. |
[58] |
FECCI P E, CHAMPION C D, HOJ J, et al. The evolving modern management of brain metastasis[J]. Clin Cancer Res, 2019, 25(22): 6570-6580.
doi: 10.1158/1078-0432.CCR-18-1624 pmid: 31213459 |
[59] | IONKINA A A, BALDERRAMA-GUTIERREZ G, IBANEZ K J, et al. Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer[J]. Breast Cancer Res, 2021, 23(1): 93. |
[60] | PEDERSEN P L, MATHUPALA S, REMPEL A, et al. Mitochondrial bound type Ⅱ hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention[J]. Biochim Biophys Acta, 2002, 1555(1/2/3): 14-20. |
[61] |
DUPUY F, TABARIÈS S, ANDRZEJEWSKI S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer[J]. Cell Metab, 2015, 22(4): 577-589.
doi: 10.1016/j.cmet.2015.08.007 pmid: 26365179 |
[62] |
DAVIS R T, BLAKE K, MA D, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing[J]. Nat Cell Biol, 2020, 22(3): 310-320.
doi: 10.1038/s41556-020-0477-0 pmid: 32144411 |
[63] |
NIMMAKAYALA R K, LEON F, RACHAGANI S, et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40(1): 215-231.
doi: 10.1038/s41388-020-01518-2 pmid: 33110235 |
[64] | VAN WEVERWIJK A, KOUNDOUROS N, IRAVANI M, et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation[J]. Nat Commun, 2019, 10(1): 2698. |
[65] | PINHEIRO L V, WELLEN K E. Fatty acids prime the lung as a site for tumour spread[J]. Nature, 2023, 615(7951): 224-225. |
[66] | RINALDI G, PRANZINI E, VAN ELSEN J, et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition[J]. Mol Cell, 2021, 81(2): 386-397.e7. |
[67] |
WANG X F, CHEN Y, LAN B, et al. Heterogeneity of tyrosine-based melanin anabolism regulates pulmonary and cerebral organotropic colonization microenvironment of melanoma cells[J]. Theranostics, 2022, 12(5): 2063-2079.
doi: 10.7150/thno.69198 pmid: 35265199 |
[68] |
GALASSI C, CHAN T A, VITALE I, et al. The hallmarks of cancer immune evasion[J]. Cancer Cell, 2024, 42(11): 1825-1863.
doi: 10.1016/j.ccell.2024.09.010 pmid: 39393356 |
[69] | HO W J, ERBE R, DANILOVA L, et al. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways[J]. Genome Biol, 2021, 22(1): 154. |
[70] |
YOSHIDA T M, WANG A, HAFLER D A. Basic principles of neuroimmunology[J]. Semin Immunopathol, 2022, 44(5): 685-695.
doi: 10.1007/s00281-022-00951-7 pmid: 35732977 |
[71] |
VAN DEN EYNDEN G G, MAJEED A W, ILLEMANN M, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications[J]. Cancer Res, 2013, 73(7): 2031-2043.
doi: 10.1158/0008-5472.CAN-12-3931 pmid: 23536564 |
[72] |
NOSAKA T, BABA T, TANABE Y, et al. Alveolar macrophages drive hepatocellular carcinoma lung metastasis by generating leukotriene B4[J]. J Immunol, 2018, 200(5): 1839-1852.
doi: 10.4049/jimmunol.1700544 pmid: 29378914 |
[73] | FU Y Y, PAJULAS A, WANG J, et al. Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9[J]. Nat Commun, 2022, 13(1): 3811. |
[74] |
HAN Y, GUO W, REN T T, et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis[J]. Cancer Lett, 2019, 440-441: 116-125.
doi: S0304-3835(18)30625-6 pmid: 30343113 |
[75] |
PUKROP T, DEHGHANI F, CHUANG H N, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way[J]. Glia, 2010, 58(12): 1477-1489.
doi: 10.1002/glia.21022 pmid: 20549749 |
[76] | XING F, LIU Y, WU S Y, et al. Loss of XIST in breast cancer activates MSN-c-met and reprograms microglia via exosomal miRNA to promote brain metastasis[J]. Cancer Res, 2018, 78(15): 4316-4330. |
[77] | KOS K, ASLAM M A, VAN DE VEN R, et al. Tumor-educated Tregs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche[J]. Cell Rep, 2022, 38(9): 110447. |
[78] |
ZHANG W J, BADO I L, HU J Y, et al. The bone microenvironment invigorates metastatic seeds for further dissemination[J]. Cell, 2021, 184(9): 2471-2486.e20.
doi: 10.1016/j.cell.2021.03.011 pmid: 33878291 |
[79] | YU J L, GREEN M D, LI S S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J]. Nat Med, 2021, 27(1): 152-164. |
[80] | LEE J C, MEHDIZADEH S, SMITH J, et al. Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis[J]. Sci Immunol, 2020, 5(52): eaba0759. |
[81] | RETICKER-FLYNN N E, ZHANG W R, BELK J A, et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis[J]. Cell, 2022, 185(11): 1924-1942.e23. |
[82] | LI X B, PAN J H, LIU T Z, et al. Novel TCF21high pericyte subpopulation promotes colorectal cancer metastasis by remodelling perivascular matrix[J]. Gut, 2023, 72(4): 710-721. |
[83] |
WANG H, TIAN L, LIU J, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability[J]. Cancer Cell, 2018, 34(5): 823-839.e7.
doi: S1535-6108(18)30468-9 pmid: 30423299 |
[84] |
ZHENG H Q, BAE Y J, KASIMIR-BAUER S, et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy[J]. Cancer Cell, 2017, 32(6): 731-747.e6.
doi: S1535-6108(17)30472-5 pmid: 29232552 |
[85] |
WANG Z J, KIM S Y, TU W, et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment[J]. Cell Metab, 2023, 35(7): 1209-1226.e13.
doi: 10.1016/j.cmet.2023.04.013 pmid: 37172577 |
[86] | VANIOTIS G, RAYES R F, QI S, et al. Collagen Ⅳ-conveyed signals can regulate chemokine production and promote liver metastasis[J]. Oncogene, 2018, 37(28): 3790-3805. |
[87] | PAN X Y, ZHOU J J, XIAO Q, et al. Cancer-associated fibroblast heterogeneity is associated with organ-specific metastasis in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2021, 14(1): 184. |
[88] |
KURAHARA H, MAEMURA K, MATAKI Y, et al. Lung recurrence and its therapeutic strategy in patients with pancreatic cancer[J]. Pancreatology, 2020, 20(1): 89-94.
doi: S1424-3903(19)30796-3 pmid: 31787525 |
[89] | KOLBEINSSON H, HOPPE A, BAYAT A, et al. Recurrence patterns and postrecurrence survival after curative intent resection for pancreatic ductal adenocarcinoma[J]. Surgery, 2021, 169(3): 649-654. |
[90] |
SASAKI T, NISHIWADA S, NAKAGAWA K, et al. Integrative analysis identifies activated anti-tumor immune microenvironment in lung metastasis of pancreatic cancer[J]. Int J Clin Oncol, 2022, 27(5): 948-957.
doi: 10.1007/s10147-022-02131-x pmid: 35142963 |
[1] | LIU Xuerou, YANG Yumei, ZHAO Qian, RONG Xiangyu, LIU Wei, ZHENG Ruijie, PANG Jinlong, LI Xian, LI Shanshan. Research progress on the role of glutamine metabolism-related proteins in tumor metastasis [J]. China Oncology, 2024, 34(1): 97-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd