China Oncology ›› 2025, Vol. 35 ›› Issue (9): 833-840.doi: 10.19401/j.cnki.1007-3639.2025.09.003
• Specialist's Commentary • Previous Articles Next Articles
Received:2025-09-10
Revised:2025-09-14
Online:2025-09-30
Published:2025-10-17
Contact:
LIANG Jun
Share article
CLC Number:
WANG Hao, LIANG Jun. Interpretation of the 2025 American Thyroid Association Management Guidelines for Adult Patients with Differentiated Thyroid Cancer: precision treatment guided by genotyping[J]. China Oncology, 2025, 35(9): 833-840.
Tab. 1
Gene mutation profiles associated with distinct pathological types"
| Pathological type | BRAFV600E | NRAS\HRAS\KRAS | TERT | TP53 | RET | PAX8/PPARγ | Note |
|---|---|---|---|---|---|---|---|
| NIFTP | None (BRAFK601E seen) | 60% | Rare | Rare | Rare | 30% | THADA fusion (30%) |
| PTC | 46%~90% | 10%-20% | 10%-15% | Rare | 10%-15% | Rare | NTRK fusion (7%) |
| IEFVPTC | Common | 70% | 10%-15% | Rare | Uncommon | 40% | Molecular profile similar to FTC |
| FTC | Rare | 30%-45% | 10%-15% | Rare | Rare | 25% | PIK3CA, PTEN mutations also occur |
| OTC | Rare | Visible | 10%-15% | Rare | Rare | Rare | Characterized by mitochondrial DNA mutations, near-haploid genome |
| PDTC/DHTC | Common | Common | Common | Common | Uncommon | Uncommon | Often arise from PTC/FTC progression, harbor additional high-risk mutations |
| ATC | 25%-70% | 15%-40% | 65%-75% | 50%-70% | Rare | Rare | Higher tumor mutation burden, harbors multiple high-risk mutations |
Tab. 2
Screening strategy for FNMTC"
| Syndrome (gene) | Histology | Other features | Lifetime risk | Germline genetic testing |
|---|---|---|---|---|
| Cowden syndrome/PHTS (PTEN) | FTC*, PTC | Breast cancer, endometrial cancer, goiter, macrocephaly | 3%-10% | Recommended |
| DICER1 tumor predisposition (DICER1) | PTC, FTC*, PDTC | Pleuropulmonary blastoma, cystic nephroma, ovarian sex cord stromal tumors | Up to 12% | Recommended |
| FAP (APC) | CMTC, PTC | Colon polyposis, CHRPE, desmoids | OR=9.2 (CI: 2.1-34.7) | Recommended |
| Carney complex (PRKAR1A) | FTC*, PTC | Pigmented abnormalities of the skin, myxomas, schwannomas, and endocrine tumors | Unknown | Recommended |
| Werner syndrome (WRN) | FTC*, PTC | Premature aging, cataracts, DM, other cancers | Unknown | Recommended |
| Unexpected findings in tumor gene testing | DTC | Suspected hereditary pathogenic gene mutations (e.g., PTEN, RET, APC, etc.) | Unknown | Recommended |
| non-syndromic FNMTC | DTC | If ≥3 family members have thyroid cancer without the aforementioned high-risk factors. | Unknown | If with history of other malignant tumors, recommended. |
| Non-FNMTC | DTC | If≤2 family members have thyroid cancer without the aforementioned high-risk factors. | Unknown | Not recommended |
Tab. 3
Genomic Changes and Combinations of Events Associated with DTC"
| Type | Early Genomic changes | Events in combination with early changes associated with progression |
|---|---|---|
| PTC | Mutation: BRAFV600E, RAS, BRAF non-V600E; Fusion: BRAF, RET, ALK, NTRK1/3; Other: 1q gain, 22q loss | Mutation: TERT promoter (C228T/C250T), TP53, RBMI0, CDKN2B, PIK3CA, PLEKSH1p, AKT1; Other: CDKN2A and CDKN2B loss, increased APOBEC3B activity, global DNA hypomethylation |
| FTC | Mutation: RAS, DICER1, EIF1AX, PTEN, GNAS, BRAF non-V600E; Fusion: PPARγ, THADA; Other: amplification of the long arm of chromosome 7, and deletion of the long arm of chromosome 22 | Mutation: TERT promoter (C228T/C250T), TP53, RB1, RBMIO, CCNE1; Other: CDKN2A and CDKN2B loss, global DNA hypomethylation |
| OTC | Mutation: Mitochondrial DNA, RAS, DAXX, ARHGGAP35, APC, FAT11, CDKN1A, PTEN, GNAS; Fusion: PRKAB1, VPRREB3, PANX1; Other: Chromosomal loss, near haploid with or without genome wide duplication | Mutation: TERT promoter (C228T/C250T); TP53, FAT1, AGAp2, MTOR, AKT2, MT2C, KEAP1, TBX3, CDKNIB, NFL, PDGFRA, CD274, JAK2; Other: CDKN2A and CDKN2B loss |
Tab.4
Genotypes and Targetedtherapy for RAIR-DTC"
| Driver gene mutation | First-line treatment | Second-line treatment |
|---|---|---|
| Non-NTRK/RET/ALK/BRAFV600E | Lenvatinib sorafenib | Cabozantinib |
| NTRK Fusion | Larotrectinib, entrectinib | Lenvatinib |
| RET Fusion | Selpercatinib, pralsetinib | Lenvatinib |
| ALK Fusion | Crizotinib, alectinib, lorlatinib | Lenvatinib |
| BRAFV600E mutation | If tolerating MKI: MKI | Vemurafenib, dabrafenib+trametinib, encorafenib+binimetinib |
| If not tolerating MKI: vemurafenib, dabrafenib+ trametinib, encorafenib+binimetinib | None |
| [1] | RINGEL M D, SOSA J A, BALOCH Z, et al. 2025 American Thyroid Association management guidelines for adult patients with differentiated thyroid cancer[J]. Thyroid, 2025, 35(8): 841-985. |
| [2] |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133.
doi: 10.1089/thy.2015.0020 pmid: 26462967 |
| [3] |
PILARSKI R, BURT R, KOHLMAN W, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria[J]. J Natl Cancer Inst, 2013, 105(21): 1607-1616.
doi: 10.1093/jnci/djt277 pmid: 24136893 |
| [4] |
STEWART D R, BEST A F, WILLIAMS G M, et al. Neoplasm risk among individuals with a pathogenic germline variant in DICER1[J]. J Clin Oncol, 2019, 37(8): 668-676.
doi: 10.1200/JCO.2018.78.4678 pmid: 30715996 |
| [5] | CETTA F, MONTALTO G, GORI M, et al. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study[J]. J Clin Endocrinol Metab, 2000, 85(1): 286-292. |
| [6] | HE H L, LI W, WU D Y, et al. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance[J]. PLoS One, 2013, 8(5): e61920. |
| [7] | BROCK P, LIYNARACHCHI S, NIEMINEN T T, et al. CHEK2 founder variants and thyroid cancer risk[J]. Thyroid, 2024, 34(4): 477-483. |
| [8] | KURTOM S, LIU J B, DOERFLER W R, et al. Tumor size and molecular risk group are associated with differentiated thyroid cancer recurrence[J]. Surgery, 2025, 177: 108838. |
| [9] | CHEN B J, SHI Y, XU Y N, et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis[J]. Clin Endocrinol, 2021, 94(5): 731-742. |
| [10] |
TODA S, HIROSHIMA Y, IWASAKI H, et al. Genomic landscape and clinical features of advanced thyroid carcinoma: a national database study in Japan[J]. J Clin Endocrinol Metab, 2024, 109(11): 2784-2792.
doi: 10.1210/clinem/dgae271 pmid: 38630010 |
| [11] | SHONKA JR D C, HO A, CHINTAKUNTLAWAR A V, et al. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment[J]. Head Neck, 2022, 44(6): 1277-1300. |
| [12] |
BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
doi: 10.1016/S0140-6736(14)60421-9 pmid: 24768112 |
| [13] | SCHLUMBERGER M, TAHARA M, WIRTH L J. Lenvatinib in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(19): 1868. |
| [14] | BROSE M S, PANASEYKIN Y, KONDA B, et al. A randomized study of lenvatinib 18 mg vs 24 mg in patients with radioiodine-refractory differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2022, 107(3): 776-787. |
| [15] |
TAHARA M, BROSE M S, WIRTH L J, et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer[J]. Eur J Cancer, 2019, 106: 61-68.
doi: S0959-8049(18)31430-8 pmid: 30471649 |
| [16] | DRILON A, LAETSCH T W, KUMMAR S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739. |
| [17] | DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282. |
| [18] | SUBBIAH V, HU M I, WIRTH L J, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501. |
| [19] |
DE SALINS V, LOGANADANE G, JOLY C, et al. Complete response in anaplastic lymphoma kinase-rearranged oncocytic thyroid cancer: a case report and review of literature[J]. World J Clin Oncol, 2020, 11(7): 495-503.
doi: 10.5306/wjco.v11.i7.495 pmid: 32821654 |
| [20] | BROSE M S, CABANILLAS M E, COHEN E E W, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(9): 1272-1282. |
| [21] | BUSAIDY N L, KONDA B, WEI L, et al. Dabrafenib versus dabrafenib+trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial[J]. Thyroid, 2022, 32(10): 1184-1192. |
| [22] | TAHARA M, KIYOTA N, IMAI H, et al. A phase 2 study of encorafenib in combination with binimetinib in patients with metastatic BRAF-mutated thyroid cancer in Japan[J]. Thyroid, 2024, 34(4): 467-476. |
| [23] | SKOULIDIS F, LI B T, DY G K, et al. Sotorasib for lung cancers with KRAS p.G12C mutation[J]. N Engl J Med, 2021, 384(25): 2371-2381. |
| [24] | KOTECHA R, SAHGAL A, MEHTA M P. Adagrasib in non-small-cell lung cancer[J]. N Engl J Med, 2022, 387(13): 1238-1239. |
| [25] | HARADA G, DRILON A. TRK inhibitor activity and resistance in TRK fusion-positive cancers in adults[J]. Cancer Genet, 2022, 264/265: 33-39. |
| [26] | SOLOMON B J, TAN L, LIN J J, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies[J]. J Thorac Oncol, 2020, 15(4): 541-549. |
| [27] |
SHOBAB L, GOMES-LIMA C, ZEYMO A, et al. Clinical, pathological, and molecular profiling of radioactive iodine refractory differentiated thyroid cancer[J]. Thyroid, 2019, 29(9): 1262-1268.
doi: 10.1089/thy.2019.0075 pmid: 31319763 |
| [28] |
BASTMAN J J, SERRACINO H S, ZHU Y W, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer[J]. J Clin Endocrinol Metab, 2016, 101(7): 2863-2873.
doi: 10.1210/jc.2015-4227 pmid: 27045886 |
| [29] |
LANDA I, IBRAHIMPASIC T, BOUCAI L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]. J Clin Invest, 2016, 126(3): 1052-1066.
doi: 10.1172/JCI85271 pmid: 26878173 |
| [30] |
OTT P A, BANG Y J, PIHA-PAUL S A, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4): 318-327.
doi: 10.1200/JCO.2018.78.2276 pmid: 30557521 |
| [31] | OH D Y, ALGAZI A, CAPDEVILA J, et al. Efficacy and safety of pembrolizumab monotherapy in patients with advanced thyroid cancer in the phase 2 KEYNOTE-158 study[J]. Cancer, 2023, 129(8): 1195-1204. |
| [32] |
French JD, Haugen BR, Worden FP, et al. Combination targeted therapy with pembrolizumab and lenvatinib in progressive, radioiodine-refractory differentiated thyroid cancers[J]. Clin Cancer Res 2024; 30(17):3757-3767.
doi: 10.1158/1078-0432.CCR-23-3417 pmid: 38922338 |
| [33] | Dierks C, Seufert J, Aumann K, et al. Combination oflenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]. Thyroid 2021; 31(7):1076-1085. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd
