China Oncology ›› 2025, Vol. 35 ›› Issue (10): 952-958.doi: 10.19401/j.cnki.1007-3639.2025.10.008
• Review • Previous Articles Next Articles
YU Xue1(
), SHEN Tianhao1, ZHOU Cheng1, LIU Yu1, JIANG Tinghui1, LI Wei3, ZHU Yongqiang1, LIU Yan1,2(
)
Received:2024-08-21
Revised:2025-06-26
Online:2025-10-30
Published:2025-11-19
Contact:
LIU Yan
Supported by:Share article
CLC Number:
YU Xue, SHEN Tianhao, ZHOU Cheng, LIU Yu, JIANG Tinghui, LI Wei, ZHU Yongqiang, LIU Yan. Research progress and prospects on the mechanisms of circulating tumor cells in the invasion and metastasis of cholangiocarcinoma[J]. China Oncology, 2025, 35(10): 952-958.
Tab. 1
Research progress on invasive pseudopodia of CTC"
| Research direction | Classification | Mechanism and function | Reference |
|---|---|---|---|
| Signal pathway | Rho family GTP enzymes | RhoA, Rac1 and Cdc42 work in coordination and division of labor, respectively regulating the contractility of pseudopodia, the branching polymerization of actin and the guidance of filamentous pseudopodia, forming a precise regulatory network | [ |
| The PI3K/AKT pathway | By generating PIP3 to activate AKT, it directly promotes actin assembly and cross-communicates with the Rho family, synergistically driving the formation of pseudopodia | [ | |
| Microenvironment interaction | Physical factors | The hardness of ECM and the arrangement of fibers affect the extension direction of pseudopodia, and regulate the migration behavior through mechanical force conduction | [ |
| Cytokine | CAFs secrete TGF-β and EGF, and macrophages polarize to produce IL-6, etc., activating pseudopodia to form signaling pathways | [ | |
| Molecular mechanism | Key protein | Cortactin stabilizes the actin network and enhances the structural stability of pseudopodia. MMPs degrade the extracellular ECM, forming an invasive positive feedback | [ |
| LncRNA | Indirectly promote the synthesis of pseudopod-related proteins by adsorbing miRNAs or regulating gene expression | [ |
| [1] |
ZHANG Y W, GVOZDENOVIC A, ACETO N. A molecular voyage: multiomics insights into circulating tumor cells[J]. Cancer Discov, 2024, 14(6): 920-933.
doi: 10.1158/2159-8290.CD-24-0218 |
| [2] |
GURZU S, SZODORAI R, JUNG I, et al. Combined hepatocellular-cholangiocarcinoma: from genesis to molecular pathways and therapeutic strategies[J]. J Cancer Res Clin Oncol, 2024, 150(5): 270.
doi: 10.1007/s00432-024-05781-8 pmid: 38780656 |
| [3] |
SUN Y F, LI T, DING L, et al. Platelet-mediated circulating tumor cell evasion from natural killer cell killing through immune checkpoint CD155-TIGIT[J]. Hepatology, 2025, 81(3): 791-807.
doi: 10.1097/HEP.0000000000000934 |
| [4] |
FABISIEWICZ A, SZOSTAKOWSKA-RODZOS M, ZACZEK A J, et al. Circulating tumor cells in early and advanced breast cancer; biology and prognostic value[J]. Int J Mol Sci, 2020, 21(5): 1671.
doi: 10.3390/ijms21051671 |
| [5] |
ARNOLD L, YAP M, FARROKHIAN N, et al. DCLK1-mediated regulation of invadopodia dynamics and matrix metalloproteinase trafficking drives invasive progression in head and neck squamous cell carcinoma[J]. Mol Cancer, 2025, 24(1): 50.
doi: 10.1186/s12943-025-02264-3 pmid: 39994636 |
| [6] |
HAO Z X, ZHANG M R, DU Y, et al. Invadopodia in cancer metastasis: dynamics, regulation, and targeted therapies[J]. J Transl Med, 2025, 23(1): 548.
doi: 10.1186/s12967-025-06526-y |
| [7] | HSU C M, LIU Y C, HUANG J F. Exploring circulating tumor cells: detection methods and biomarkers for clinical evaluation in hepatocellular carcinoma[J]. J Clin Transl Hepatol, 2024, 12(12): 1020-1042. |
| [8] |
PEI F, TAO Z, LU Q, et al. Octamer-binding transcription factor 4-positive circulating tumor cell predicts worse treatment response and survival in advanced cholangiocarcinoma patients who receive immune checkpoint inhibitors treatment[J]. World J Surg Oncol, 2024, 22(1): 110.
doi: 10.1186/s12957-024-03369-7 pmid: 38664770 |
| [9] |
YANG J D, CAMPION M B, LIU M C, et al. Circulating tumor cells are associated with poor overall survival in patients with cholangiocarcinoma[J]. Hepatology, 2016, 63(1): 148-58.
doi: 10.1002/hep.27944 pmid: 26096702 |
| [10] |
ROSSI T, VALGIUSTI M, PUCCETTI M, et al. Gastroesophageal circulating tumor cell crosstalk with peripheral immune system guides CTC survival and proliferation[J]. Cell Death Dis, 2025, 16(1): 223.
doi: 10.1038/s41419-025-07530-2 |
| [11] |
HAO W D, DONG X C, WANG Z J, et al. CRABP2 promotes peritoneal metastasis in CRC through TGF-β/Smad-mediated EMT signaling and invadopodia formation[J]. Cell Signal, 2025, 134: 111927.
doi: 10.1016/j.cellsig.2025.111927 |
| [12] |
ALLGAYER H, MAHAPATRA S, MISHRA B, et al. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025[J]. Mol Cancer, 2025, 24(1): 167.
doi: 10.1186/s12943-025-02338-2 |
| [13] |
LI C, HE W, WANG N, et al. Application of microfluidics in detection of circulating tumor cells[J]. Front Bioeng Biotechnol, 2022, 10: 907232.
doi: 10.3389/fbioe.2022.907232 |
| [14] | HASSANZADEH-BARFOROUSHI A, TUKOVA A, NADALINI A, et al. Microfluidic-SERS technologies for CTC: a perspective on clinical translation[J]. ACS Appl Mater Interfaces, 2024, 16(18): 22761-22775. |
| [15] |
GOSTOMCZYK K, MARSOOL M D M, TAYYAB H, et al. Targeting circulating tumor cells to prevent metastases[J]. Hum Cell, 2024, 37(1): 101-120.
doi: 10.1007/s13577-023-00992-6 |
| [16] |
ZHOU X, KONG X H, LU J, et al. Circulating tumor cell-derived exosome-transmitted long non-coding RNA TTN-AS1 can promote the proliferation and migration of cholangiocarcinoma cells[J]. J Nanobiotechnology, 2024, 22(1): 191.
doi: 10.1186/s12951-024-02459-8 |
| [17] |
ZHANG Q, KONG D F, YANG Z R, et al. Prognostic value of stem-like circulating tumor cells in patients with cancer: a systematic review and meta-analysis[J]. Clin Exp Med, 2023, 23(6): 1933-1944.
doi: 10.1007/s10238-023-01009-0 pmid: 36735207 |
| [18] |
TRETYAKOVA M S, MENYAILO M E, SCHEGOLEVA A A, et al. Technologies for viable circulating tumor cell isolation[J]. Int J Mol Sci, 2022, 23(24): 15979.
doi: 10.3390/ijms232415979 |
| [19] | TANG R, LUO S J, LIU H, et al. Circulating tumor microenvironment in metastasis[J]. Cancer Res, 2025, 85(8): 1354-1367. |
| [20] |
KROG B L, HENRY M D. Biomechanics of the circulating tumor cell microenvironment[J]. Adv Exp Med Biol, 2018, 1092: 209-233.
doi: 10.1007/978-3-319-95294-9_11 pmid: 30368755 |
| [21] |
NAGAOKA K, OGAWA K, JI C C, et al. Targeting aspartate beta-hydroxylase with the small molecule inhibitor MO-I-1182 suppresses cholangiocarcinoma metastasis[J]. Dig Dis Sci, 2021, 66(4): 1080-1089.
doi: 10.1007/s10620-020-06330-2 |
| [22] |
LAWRENCE R, WATTERS M, DAVIES C R, et al. Circulating tumour cells for early detection of clinically relevant cancer[J]. Nat Rev Clin Oncol, 2023, 20(7): 487-500.
doi: 10.1038/s41571-023-00781-y pmid: 37268719 |
| [23] |
WU Q Y, GU Z R, SHANG B Q, et al. Circulating tumor cell clustering modulates RNA splicing and polyadenylation to facilitate metastasis[J]. Cancer Lett, 2024, 588: 216757.
doi: 10.1016/j.canlet.2024.216757 |
| [24] |
XU D M, ZHUANG X Y, MA H L, et al. Altered tumor microenvironment heterogeneity of penile cancer during progression from non-lymphatic to lymphatic metastasis[J]. Cancer Med, 2024, 13(14): e70025.
doi: 10.1002/cam4.v13.14 |
| [25] |
XU D M, CHEN L X, ZHUANG X Y, et al. The role of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer[J]. Int J Med Sci, 2024, 21(6): 1176-1186.
doi: 10.7150/ijms.95490 |
| [26] |
GUO S Y, HUANG J, LI G P, et al. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis[J]. Mol Cancer, 2023, 22(1): 193.
doi: 10.1186/s12943-023-01909-5 pmid: 38037077 |
| [27] |
KISS I, KOLOSTOVA K, PAWLAK I, et al. Circulating tumor cells in gynaecological malignancies[J]. J BUON, 2020, 25(1): 40-50.
pmid: 32277613 |
| [28] |
SUVILESH K N, MANJUNATH Y, PANTEL K, et al. Preclinical models to study patient-derived circulating tumor cells and metastasis[J]. Trends Cancer, 2023, 9(4): 355-371.
doi: 10.1016/j.trecan.2023.01.004 pmid: 36759267 |
| [29] |
TOCCI P, CAPRARA V, ROMAN C, et al. YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer[J]. Biosci Rep, 2024, 44(12): BSR20241320.
doi: 10.1042/BSR20241320 |
| [30] |
DAVIS S S, BASSARO L R, TUMA P L. MAL2 and rab17 selectively redistribute invadopodia proteins to laterally-induced protrusions in hepatocellular carcinoma cells[J]. Mol Biol Cell, 2025, 36(3): ar26.
doi: 10.1091/mbc.E24-09-0400 |
| [31] |
TANG Y Y, HE Y, ZHANG P, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis[J]. Mol Cancer, 2018, 17(1): 77.
doi: 10.1186/s12943-018-0825-x pmid: 29618386 |
| [32] |
DOLSKII A, ALCANTARA DOS SANTOS S A, ANDRAKE M, et al. Exploring the potential role of palladin in modulating human CAF/ECM functional units[J]. Cytoskeleton, 2025, 82(3): 175-185.
doi: 10.1002/cm.v82.3 |
| [33] |
XIN X, CHENG X Y, ZENG F X, et al. The role of TGF-β/SMAD signaling in hepatocellular carcinoma: From mechanism to therapy and prognosis[J]. Int J Biol Sci, 2024, 20(4): 1436-1451.
doi: 10.7150/ijbs.89568 pmid: 38385079 |
| [34] |
MAHAKI H, NOBARI S, TANZADEHPANAH H, et al. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: therapeutic strategies and insights[J]. Biomed Pharmacother, 2025, 186: 118023.
doi: 10.1016/j.biopha.2025.118023 |
| [35] |
BRAVO-CORDERO J J, HODGSON L, CONDEELIS J S. Spatial regulation of tumor cell protrusions by RhoC[J]. Cell Adh Migr, 2014, 8(3): 263-267.
doi: 10.4161/cam.28405 |
| [36] |
KIM K H, YI H S, LEE H, et al. Targeting the sequences of circulating tumor DNA of cholangiocarcinomas and its applications and limitations in clinical practice[J]. Int J Mol Sci, 2023, 24(8): 7512.
doi: 10.3390/ijms24087512 |
| [37] |
SHARIFI M N, SPERGER J M, TAYLOR A K, et al. High-purity CTC RNA sequencing identifies prostate cancer lineage phenotypes prognostic for clinical outcomes[J]. Cancer Discov, 2025, 15(5): 969-987.
doi: 10.1158/2159-8290.CD-24-1509 |
| [38] |
DUTTA D, AL HOQUE A, PAUL B, et al. EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment[J]. J Biomed Sci, 2024, 31(1): 81.
doi: 10.1186/s12929-024-01069-8 pmid: 39164686 |
| [39] |
XUE W H, YANG L, CHEN C X, et al. Wnt/β-catenin-driven EMT regulation in human cancers[J]. Cell Mol Life Sci, 2024, 81(1): 79.
doi: 10.1007/s00018-023-05099-7 pmid: 38334836 |
| [40] |
ALEMZADEH E, ALLAHQOLI L, DEHGHAN H, et al. Circulating tumor cells and circulating tumor DNA in breast cancer diagnosis and monitoring[J]. Oncol Res, 2023, 31(5): 667-675.
doi: 10.32604/or.2023.028406 pmid: 37547763 |
| [41] |
NING Y D, ZHENG M Y, ZHANG Y, et al. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential[J]. Cancer Cell Int, 2024, 24(1): 339.
doi: 10.1186/s12935-024-03519-7 pmid: 39402585 |
| [42] |
ZHU B B, CAO A Y, CHEN C Q, et al. MMP-9 inhibition alleviates postoperative cognitive dysfunction by improving glymphatic function via regulating AQP4 polarity[J]. Int Immunopharmacol, 2024, 126: 111215.
doi: 10.1016/j.intimp.2023.111215 |
| [43] |
RAPANOTTI M C, CENCI T, SCIOLI M G, et al. Circulating tumor cells: Origin, role, current applications, and future perspectives for personalized medicine[J]. Biomedicines, 2024, 12(9): 2137.
doi: 10.3390/biomedicines12092137 |
| [44] |
DONATO C, KUNZ L, CASTRO-GINER F, et al. Hypoxia triggers the intravasation of clustered circulating tumor cells[J]. Cell Rep, 2020, 32(10): 108105.
doi: 10.1016/j.celrep.2020.108105 |
| [45] |
SOMSEN B A, COSSAR P J, ARKIN M R, et al. 14-3-3 protein-protein interactions: From mechanistic understanding to their small-molecule stabilization[J]. Chembiochem, 2024, 25(14): e202400214.
doi: 10.1002/cbic.v25.14 |
| [46] |
HUANG L, WANG J X, WANG X Y, et al. Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation[J]. Cancer Lett, 2024, 601: 217145.
doi: 10.1016/j.canlet.2024.217145 |
| [47] |
ZHOU Y, CAO Y D, LIU W D, et al. Leveraging a gene signature associated with disulfidptosis identified by machine learning to forecast clinical outcomes, immunological heterogeneities, and potential therapeutic targets within lower-grade glioma[J]. Front Immunol, 2023, 14: 1294459.
doi: 10.3389/fimmu.2023.1294459 |
| [48] | WANG X, ZHANG H Y, CHEN X Z. Drug resistance and combating drug resistance in cancer[J]. Cancer Drug Resist, 2019, 2(2): 141-160. |
| [49] |
ZHANG Q, ZHANG X L, LV Z H, et al. Dynamically monitoring minimal residual disease using circulating tumor cells to predict the recurrence of early-stage lung adenocarcinoma[J]. J Hematol Oncol, 2024, 17(1): 114.
doi: 10.1186/s13045-024-01637-3 |
| [50] |
MENG S, SØRENSEN E E, PONNIAH M, et al. MCT4 and CD147 colocalize with MMP14 in invadopodia and support matrix degradation and invasion by breast cancer cells[J]. J Cell Sci, 2024, 137(8): jcs261608.
doi: 10.1242/jcs.261608 |
| [51] |
QUILAQUEO-MILLAQUEO N, BROWN-BROWN D A, VIDAL-VIDAL J A, et al. NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion[J]. Biol Res, 2024, 57(1): 98.
doi: 10.1186/s40659-024-00577-z |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd