中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (1): 1-12.doi: 10.19401/j.cnki.1007-3639.2022.01.001
收稿日期:
2022-01-02
修回日期:
2022-01-05
出版日期:
2022-01-30
发布日期:
2022-01-30
通信作者:
虞先濬
E-mail:yuxianjun@fudanpci.org
作者简介:
虞先濬,主任医师,教授,外科学和肿瘤学双科博士研究生导师,目前担任复旦大学附属肿瘤医院副院长、上海市胰腺肿瘤研究所所长、复旦大学胰腺肿瘤研究所所长、中国抗癌协会胰腺癌专业委员会主任委员。长期从事胰腺肿瘤外科基础和临床转化研究,主要成就有:① 发明“乳头状残端封闭型”胰空肠吻合术,研发专用手术器械,显著提高了手术安全性;② 针对胰腺癌淋巴转移特性,规范手术清扫范围,开展靶向攻击淋巴转移的临床前研究;③ 发现胰腺癌“手术不获益”亚群的临床特征,揭示其分子机制,为建立个体化干预策略奠定基础;④ 发现胰腺癌和胰腺神经内分泌肿瘤增殖与淋巴转移的特殊性,改良国际分期,指导临床决策;⑤ 提出基于间质比例的胰腺癌个体化化疗理论,指导胰腺癌精准治疗。2016年获得国家杰出青年科学基金,2017年入选科技部中青年科技创新领军人才,2019年入选人社部百千万人才工程,2021年获得全国五一劳动奖章。既往主持国家自然科学基金中德国际合作项目1项、区域创新发展联合基金重点项目1项、面上项目2项及省部级项目9项;入选上海市领军人才、上海工匠、上海市新百人计划和上海市启明星跟踪计划。以通信作者(含共同通信作者)在Journal of Clinical Oncology、Gut、Annals of Surgery、Cell Research、Autophagy、Clinical Cancer Research等权威SCI收录期刊上发表论文200余篇。作为第一发明人获得5项国家实用新型专利、上海市优秀发明选拔赛金奖。作为第一完成人获得中国抗癌协会科技奖一等奖、上海医学科技奖一等奖。研究成果受到国内外同行的关注和认可,已被纳入多部胰腺肿瘤临床指南或共识,指导临床实践。
ZHU Xinzhe, LI Hao, XU Huaxiang, LUO Guopei, YU Xianjun()
Received:
2022-01-02
Revised:
2022-01-05
Published:
2022-01-30
Online:
2022-01-30
Contact:
YU Xianjun
E-mail:yuxianjun@fudanpci.org
文章分享
摘要:
胰腺癌是恶性程度极高的消化道肿瘤,由于缺乏适当的筛查和诊断方法、胰腺位置深、组织活检困难、肿瘤进展快及对治疗应答率低,其发病率与死亡率几乎一致。约80%的患者在确诊时已是晚期,中位生存期不足1年。胰腺癌极具侵袭性的疾病性质和患者的低存活率,使其成为严重的全球疾病负担。大量基础与临床研究的推进,使得胰腺癌在发病机制、诊断方法、围手术期处理、放疗技术和晚期疾病的系统治疗等方面取得了新的进展。这些成果不断丰富胰腺癌患者的诊治手段,改善其预后。现对2021年胰腺癌研究领域的重大研究进展进行综述。
中图分类号:
朱鑫哲, 李浩, 徐华祥, 罗国培, 虞先濬. 2021年胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2022, 32(1): 1-12.
ZHU Xinzhe, LI Hao, XU Huaxiang, LUO Guopei, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2021[J]. China Oncology, 2022, 32(1): 1-12.
[1] |
SIEGEL R L,, MILLER K D,, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
doi: 10.3322/caac.v71.1 |
[2] | CABASAG C J,, FERLAY J,, LAVERSANNE M, et al. Pancreatic cancer: an increasing global public health concern[J]. Gut, 2021. Online ahead of print. |
[3] |
CARIOLI G,, MALVEZZI M,, BERTUCCIO P, et al. European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer[J]. Ann Oncol, 2021, 32(4): 478-487.
doi: 10.1016/j.annonc.2021.01.006 |
[4] |
SUN D,, CAO M,, LI H, et al. Cancer burden and trends in China: a review and comparison with Japan and South Korea[J]. Chin J Cancer Res, 2020, 32(2): 129-139.
doi: 10.21147/j.issn.1000-9604.2020.02.01 |
[5] |
MIZRAHI J D,, SURANA R,, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020.
doi: 10.1016/S0140-6736(20)30974-0 |
[6] |
KLEIN A P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 493-502.
doi: 10.1038/s41575-021-00457-x |
[7] |
MOCCI E,, KUNDU P,, WHEELER W, et al. Smoking modifies pancreatic cancer risk loci on 2q21.3[J]. Cancer Res, 2021, 81(11): 3134-3143.
doi: 10.1158/0008-5472.CAN-20-3267 |
[8] |
HUANG B Z,, PANDOL S J,, JEON C Y, et al. New-onset diabetes, longitudinal trends in metabolic markers, and risk of pancreatic cancer in a heterogeneous population[J]. Clin Gastroenterol Hepatol, 2020, 18(8): 1812-1821. e1817.
doi: 10.1016/j.cgh.2019.11.043 |
[9] | CHAN T T,, TSE Y K,, LUI R N, et al. Fatty pancreas is independently associated with subsequent diabetes mellitus development: a 10-year prospective cohort study[J]. Clin Gastroenterol Hepatol, 2021. Online ahead of print. |
[10] | SCHWARTZ N R M,, MATRISIAN L M,, SHRADER E E, et al. Potential cost-effectiveness of risk-based pancreatic cancer screening in patients with new-onset diabetes[J]. J Natl Compr Canc Netw, 2021: 1-9. |
[11] |
GIRI B,, SETHI V,, MODI S, et al. Heat shock protein 70 in pancreatic diseases: friend or foe[J]. J Surg Oncol, 2017, 116(1): 114-122.
doi: 10.1002/jso.v116.1 |
[12] |
QIAN W,, CHEN K,, QIN T,, et al. The EGFR-HSF 1 axis accelerates the tumorigenesis of pancreatic cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 25.
doi: 10.1186/s13046-020-01823-4 |
[13] |
DEL POGGETTO E,, HO I L,, BALESTRIERI C, et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis[J]. Science, 2021, 373(6561): eabj0486.
doi: 10.1126/science.abj0486 |
[14] |
TSANG E S,, TOPHAM J T,, KARASINSKA J M, et al. Delving into early-onset pancreatic ductal adenocarcinoma: how does age fit in?[J]. Clin Cancer Res, 2021, 27(1): 246-254.
doi: 10.1158/1078-0432.CCR-20-1042 |
[15] |
OPITZ F V,, HAEBERLE L,, DAUM A, et al. Tumor microenvironment in pancreatic intraepithelial neoplasia[J]. Cancers (Basel), 2021, 13(24): 6188.
doi: 10.3390/cancers13246188 |
[16] |
HAYASHI A,, HONG J,, IACOBUZIO-DONAHUE C A. The pancreatic cancer genome revisited[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 469-481.
doi: 10.1038/s41575-021-00463-z |
[17] |
SIMANSHU D K,, NISSLEY D V,, MCCORMICK F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1): 17-33.
doi: 10.1016/j.cell.2017.06.009 |
[18] | KRISHNAN T,, ROBERTS-THOMSON R,, BROADBRIDGE V, et al. Targeting mutated KRAS genes to treat solid tumours[J]. Mol Diagn Ther, 2021. Online ahead of print. |
[19] |
CANON J,, REX K,, SAIKI A Y, et al. The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1 |
[20] |
SATURNO G,, LOPES F,, NICULESCU-DUVAZ I, et al. The paradox-breaking PANraf plus src family kinase inhibitor, CCT3833, is effective in mutant KRAS-driven cancers[J]. Ann Oncol, 2021, 32(2): 269-278.
doi: 10.1016/j.annonc.2020.10.483 |
[21] |
WANG J,, CHEN Y,, HUANG C, et al. Valosin-containing protein stabilizes mutant p53 to promote pancreatic cancer growth[J]. Cancer Res, 2021, 81(15): 4041-4053.
doi: 10.1158/0008-5472.CAN-20-3855 |
[22] |
KASSARDJIAN A,, WANG H L. SMAD4-expressing pancreatic ductal adenocarcinomas have better response to neoadjuvant therapy and significantly lower lymph node metastasis rates[J]. Pancreas, 2020, 49(9): 1153-1160.
doi: 10.1097/MPA.0000000000001636 |
[23] |
WANG C,, ZHANG T,, LIAO Q, et al. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation[J]. Protein Cell, 2021, 12(2): 128-144.
doi: 10.1007/s13238-020-00760-4 |
[24] |
GRANT R C,, DENROCHE R,, JANG G H, et al. Clinical and genomic characterisation of mismatch repair deficient pancreatic adenocarcinoma[J]. Gut, 2021, 70(10): 1894-1903.
doi: 10.1136/gutjnl-2020-320730 |
[25] |
HSU F C,, ROBERTS N J,, CHILDS E, et al. Risk of pancreatic cancer among individuals with pathogenic variants in the ATM gene[J]. JAMA Oncol, 2021, 7(11): 1664-1668.
doi: 10.1001/jamaoncol.2021.3701 |
[26] |
SCARPA A,, REAL F X,, LUCHINI C. Genetic unrelatedness of co-occurring pancreatic adenocarcinomas and IPMNs challenges current views of clinical management[J]. Gut, 2018, 67(9): 1561-1563.
doi: 10.1136/gutjnl-2018-316151 |
[27] |
FUJIKURA K,, HOSODA W,, FELSENSTEIN M, et al. Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic KLF4 mutations predominantly in low-grade regions[J]. Gut, 2021, 70(5): 928-939.
doi: 10.1136/gutjnl-2020-321217 |
[28] |
GUPTA V K,, SHARMA N S,, DURDEN B, et al. Hypoxia-driven oncometabolite L-2HG maintains stemness-differentiation balance and facilitates immune evasion in pancreatic cancer[J]. Cancer Res, 2021, 81(15): 4001-4013.
doi: 10.1158/0008-5472.CAN-20-2562 |
[29] |
MEHRA S,, DESHPANDE N,, NAGATHIHALLI N. Targeting PI3K pathway in pancreatic ductal adenocarcinoma: rationale and progress[J]. Cancers (Basel), 2021, 13(17): 4434.
doi: 10.3390/cancers13174434 |
[30] |
BIANCUR D E,, KAPNER K S,, YAMAMOTO K, et al. Functional genomics identifies metabolic vulnerabilities in pancreatic cancer[J]. Cell Metab, 2021, 33(1): 199-210. e198.
doi: 10.1016/j.cmet.2020.10.018 |
[31] |
HU Q,, QIN Y,, JI S, et al. MTAP deficiency-induced metabolic reprogramming creates a vulnerability to cotargeting de novo purine synthesis and glycolysis in pancreatic cancer[J]. Cancer Res, 2021, 81(19): 4964-4980.
doi: 10.1158/0008-5472.CAN-20-0414 |
[32] | TSAI P Y,, LEE M S,, JADHAV U, et al. Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by MTORC1[J]. Proc Natl Acad Sci U S A, 2021, 118(10): e2003014118. |
[33] |
HOSEIN A N,, BREKKEN R A,, MAITRA A. Pancreatic cancer stroma: an update on therapeutic targeting strategies[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 487-505.
doi: 10.1038/s41575-020-0300-1 |
[34] |
HO W J,, JAFFEE E M,, ZHENG L. The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540.
doi: 10.1038/s41571-020-0363-5 |
[35] | TAKAHASHI R,, MACCHINI M,, SUNAGAWA M, et al. Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression[J]. Gut, 2021, 70(2): 330-341. |
[36] |
GRÜNWALD B T,, DEVISME A,, ANDRIEUX G, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer[J]. Cell, 2021, 184(22): 5577-5592. e5518.
doi: 10.1016/j.cell.2021.09.022 |
[37] |
SCHOEPS B,, ECKFELD C,, PROKOPCHUK O, et al. TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer[J]. Cancer Res, 2021, 81(13): 3568-3579.
doi: 10.1158/0008-5472.CAN-20-4125 |
[38] |
SERRANO-POZO A,, DAS S,, HYMAN B T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20(1): 68-80.
doi: 10.1016/S1474-4422(20)30412-9 |
[39] |
KEMP S B,, CARPENTER E S,, STEELE N G, et al. Apolipoprotein e promotes immune suppression in pancreatic cancer through NF-κB-mediated production of CXCL1[J]. Cancer Res, 2021, 81(16): 4305-4318.
doi: 10.1158/0008-5472.CAN-20-3929 |
[40] |
LIU H,, SHI Y,, QIAN F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts[J]. Adv Drug Deliv Rev, 2021, 172: 37-51.
doi: 10.1016/j.addr.2021.02.012 |
[41] |
HUTTON C,, HEIDER F,, BLANCO-GOMEZ A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity[J]. Cancer Cell, 2021, 39(9): 1227-1244. e1220.
doi: 10.1016/j.ccell.2021.06.017 |
[42] |
LI T J,, LI H,, ZHANG W H, et al. Human splenic ter cells: a relevant prognostic factor acting via the artemin-GFRα3-ERK pathway in pancreatic ductal adenocarcinoma[J]. Int J Cancer, 2021, 148(7): 1756-1767.
doi: 10.1002/ijc.v148.7 |
[43] |
CAO L,, HUANG C,, CUI ZHOU D, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma[J]. Cell, 2021, 184(19): 5031-5052. e5026.
doi: 10.1016/j.cell.2021.08.023 |
[44] |
LUO G,, JIN K,, DENG S, et al. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188409.
doi: 10.1016/j.bbcan.2020.188409 |
[45] | SINGHI A D,, WOOD L D. Early detection of pancreatic cancer using DNA-based molecular approaches[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 457-468. |
[46] |
MAJUMDER S,, TAYLOR W R,, FOOTE P H, et al. High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9[J]. Clin Cancer Res, 2021, 27(9): 2523-2532.
doi: 10.1158/1078-0432.CCR-20-0235 |
[47] |
DINGES S S,, HOHM A,, VANDERGRIFT L A, et al. Cancer metabolomic markers in urine: evidence, techniques and recommendations[J]. Nat Rev Urol, 2019, 16(6): 339-362.
doi: 10.1038/s41585-019-0185-3 |
[48] | DE MATTEIS S,, BONAFÈ M,, GIUDETTI A M. Urinary metabolic biomarkers in cancer patients: an overview[J]. Methods Mol Biol, 2021, 2292: 203-212. |
[49] |
RADON T P,, MASSAT N J,, JONES R, et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma[J]. Clin Cancer Res, 2015, 21(15): 3512-3521.
doi: 10.1158/1078-0432.CCR-14-2467 |
[50] |
YANG K S,, CIPRANI D,, O’SHEA A, et al. Extracellular vesicle analysis allows for identification of invasive IPMN[J]. Gastroenterology, 2021, 160(4): 1345-1358. e1311.
doi: 10.1053/j.gastro.2020.11.046 |
[51] | MILLIKAN K W,, DEZIEL D J,, SILVERSTEIN J C, et al. Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas[J]. Am Surg, 1999, 65(7): 618-623; discussion 623-624. |
[52] | VAN DER HEIJDE N,, LOF S,, BUSCH O R, et al. Incidence and impact of postoperative pancreatic fistula after minimally invasive and open distal pancreatectomy[J]. Surgery, 2021. Online ahead of print. |
[53] | KLOMPMAKER S,, DE ROOIJ T,, KOERKAMP B G, et al. International validation of reduced major morbidity after minimally invasive distal pancreatectomy compared with open pancreatectomy[J]. Ann Surg, 2021, 274(6): e966-e973. |
[54] |
DE ROOIJ T,, VAN HILST J,, VAN SANTVOORT H, et al. Minimally invasive versus open distal pancreatectomy (leopard) a multicenter patient-blinded randomized controlled trial[J]. Ann Surg, 2019, 269(1): 2-9.
doi: 10.1097/SLA.0000000000002979 |
[55] |
ZHANG J,, SANS M,, GARZA K Y, et al. Mass spectrometry technologies to advance care for cancer patients in clinical and intraoperative use[J]. Mass Spectrom Rev, 2021, 40(5): 692-720.
doi: 10.1002/mas.v40.5 |
[56] | KING M E,, ZHANG J,, LIN J Q, et al. Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the masspec pen technology[J]. Proc Natl Acad Sci U S A, 2021, 118(28): e2104411118. |
[57] |
KUNZMANN V,, SIVEKE J T,, ALGÜL H, et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(2): 128-138.
doi: 10.1016/S2468-1253(20)30330-7 |
[58] |
DAHAN L,, WILLIET N,, LE MALICOT K, et al. Randomized phase Ⅱ trial evaluating two sequential treatments in first line of metastatic pancreatic cancer: results of the panoptimox-prodige 35 trial[J]. J Clin Oncol, 2021, 39(29): 3242-3250.
doi: 10.1200/JCO.20.03329 |
[59] |
SOHAL D P,, WALSH R M,, RAMANATHAN R K, et al. Pancreatic adenocarcinoma: treating a systemic disease with systemic therapy[J]. J Natl Cancer Inst, 2014, 106(3): dju011.
doi: 10.1093/jnci/dju011 |
[60] |
SOHAL D P S,, DUONG M,, AHMAD S A, et al. Efficacy of perioperative chemotherapy for resectable pancreatic adenocarcinoma: a phase 2 randomized clinical trial[J]. JAMA Oncol, 2021, 7(3): 421-427.
doi: 10.1001/jamaoncol.2020.7328 |
[61] |
HECHT J R,, LONARDI S,, BENDELL J, et al. Randomized phase Ⅲ study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (sequoia)[J]. J Clin Oncol, 2021, 39(10): 1108-1118.
doi: 10.1200/JCO.20.02232 |
[62] | ROJAS L A,, BALACHANDRAN V P. Scaling the immune incline in PDAC[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 453-454. |
[63] |
VONDERHEIDE R H. CD 40 agonist antibodies in cancer immunotherapy[J]. Annu Rev Med, 2020, 71: 47-58.
doi: 10.1146/med.2020.71.issue-1 |
[64] |
O’HARA M H,, O’REILLY E M,, ROSEMARIE M, et al. A phase ib study of cd40 agonistic monoclonal antibody apx005m together with gemcitabine (GEM) and nab-paclitaxel (NP) with or without nivolumab (nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients[J]. Cancer Res, 2019, 79(13): 3.
doi: 10.1158/0008-5472.CAN-18-3552 |
[65] | JIANG H,, COURAU T,, BORISON J, et al. Activating immune recognition in pancreatic ductal adenocarcinoma via autophagy inhibition, mek blockade, and CD40 agonism[J]. Gastroenterology, 2021. Online ahead of print. |
[66] |
MARELLI G,, CHARD DUNMALL L S,, YUAN M, et al. A systemically deliverable vaccinia virus with increased capacity for intertumoral and intratumoral spread effectively treats pancreatic cancer[J]. J Immunother Cancer, 2021, 9(1): e001624.
doi: 10.1136/jitc-2020-001624 |
[67] |
MELISI D,, OH D Y,, HOLLEBECQUE A, et al. Safety and activity of the TGF-β receptor Ⅰ kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer[J]. J Immunother Cancer, 2021, 9(3): e002068.
doi: 10.1136/jitc-2020-002068 |
[68] |
ANWAR M Y,, WILLIAMS G R,, PALURI R K. CAR-T cell therapy in pancreaticobiliary cancers: a focused review of clinical data[J]. J Gastrointest Cancer, 2021, 52(1): 1-10.
doi: 10.1007/s12029-020-00457-1 |
[69] |
LESCH S,, BLUMENBERG V,, STOIBER S, et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours[J]. Nat Biomed Eng, 2021, 5(11): 1246-1260.
doi: 10.1038/s41551-021-00737-6 |
[70] |
GOOD C R,, AZNAR M A,, KURAMITSU S, et al. An NK-like CAR-T cell transition in CAR-T cell dysfunction[J]. Cell, 2021, 184(25): 6081-6100. e6026.
doi: 10.1016/j.cell.2021.11.016 |
[71] |
ALI A I,, WANG M,, VON SCHEIDT B, et al. A histone deacetylase inhibitor, panobinostat, enhances chimeric antigen receptor T-cell antitumor effect against pancreatic cancer[J]. Clin Cancer Res, 2021, 27(22): 6222-6234.
doi: 10.1158/1078-0432.CCR-21-1141 |
[72] |
PETRELLI F,, COMITO T,, GHIDINI A, et al. Stereotactic body radiation therapy for locally advanced pancreatic cancer: a systematic review and pooled analysis of 19 trials[J]. Int J Radiat Oncol Biol Phys, 2017, 97(2): 313-322.
doi: 10.1016/j.ijrobp.2016.10.030 |
[73] |
MAHADEVAN A,, MONINGI S,, GRIMM J, et al. Maximizing tumor control and limiting complications with stereotactic body radiation therapy for pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2021, 110(1): 206-216.
doi: 10.1016/j.ijrobp.2020.11.017 |
[74] |
MUELLER A C,, PIPER M,, GOODSPEED A, et al. Induction of ADAM10 by radiation therapy drives fibrosis, resistance, and epithelial-to-mesenchyal transition in pancreatic cancer[J]. Cancer Res, 2021, 81(12): 3255-3269.
doi: 10.1158/0008-5472.CAN-20-3892 |
[75] |
REYNGOLD M,, O’REILLY E M,, VARGHESE A M, et al. Association of ablative radiation therapy with survival among patients with inoperable pancreatic cancer[J]. JAMA Oncol, 2021, 7(5): 735-738.
doi: 10.1001/jamaoncol.2021.0057 |
[76] |
ZHU X,, CAO Y,, LIU W, et al. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2021, 22(8): 1093-1102.
doi: 10.1016/S1470-2045(21)00286-2 |
[77] |
ARVIND R,, CHANDANA S R,, BORAD M J, et al. Tumor-treating fields: a fourth modality in cancer treatment, new practice updates[J]. Crit Rev Oncol Hematol, 2021, 168: 103535.
doi: 10.1016/j.critrevonc.2021.103535 |
[78] |
RIVERA F,, BENAVIDES M,, GALLEGO J, et al. Tumor treating fields in combination with gemcitabine or gemcitabine plus nab-paclitaxel in pancreatic cancer: results of the panova phase 2 study[J]. Pancreatology, 2019, 19(1): 64-72.
doi: 10.1016/j.pan.2018.10.004 |
[79] |
BAI L,, PFEIFER T,, GROSS W, et al. Establishment of tumor treating fields combined with mild hyperthermia as novel supporting therapy for pancreatic cancer[J]. Front Oncol, 2021, 11: 738801.
doi: 10.3389/fonc.2021.738801 |
[1] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[2] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[3] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[4] | 上海市抗癌协会胃癌专业委员会, 中国人体健康科技促进会胃肠肿瘤专业委员会. 侵犯邻近脏器的进展期胃癌的临床诊疗中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(5): 517-526. |
[5] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[6] | 冯征, 郭勤浩, 朱俊, 吴小华, 温灏. 2023年度妇科恶性肿瘤治疗进展及展望[J]. 中国癌症杂志, 2024, 34(4): 340-360. |
[7] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[8] | 汪学非, 周鹏, 唐兆庆. 胃癌外科治疗的新进展及发展趋势[J]. 中国癌症杂志, 2024, 34(3): 250-258. |
[9] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[10] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[11] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[12] | 刘志昱, 徐栋, 陈西昊, 李纪鹏. 局部进展期直肠癌新辅助放化疗后肿瘤退缩的影响因素分析及预测模型构建[J]. 中国癌症杂志, 2024, 34(2): 191-200. |
[13] | 徐梓淇, 胡睿智, 李军建, 王红霞, 桑友洲. 甲基化驱动基因IFFO1在胰腺癌诊断和预后中的作用及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2024, 34(11): 998-1010. |
[14] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[15] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn