中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (1): 61-67.doi: 10.19401/j.cnki.1007-3639.2022.01.008
收稿日期:
2021-05-12
修回日期:
2021-08-05
出版日期:
2022-01-30
发布日期:
2022-01-25
通信作者:
张剑
E-mail:syner2000@163.com
JIN Yizi, LIN Mingxi, ZHANG Jian()
Received:
2021-05-12
Revised:
2021-08-05
Published:
2022-01-30
Online:
2022-01-25
Contact:
ZHANG Jian
E-mail:syner2000@163.com
摘要:
DNA损伤应答(DNA damage response,DDR)缺陷是近年来乳腺癌治疗研究的热门靶点之一。DDR通路负责DNA损伤后的识别、信号转导和修复,其功能异常可导致细胞的凋亡或基因组不稳定性的增加。目前进入临床研究阶段的乳腺癌DDR靶向药物主要包括多聚腺苷二磷酸核糖聚合酶[poly (ADP-ribose) polymerase,PARP]抑制剂、ATM抑制剂、CHEK1抑制剂、ATR抑制剂及WEE1抑制剂等。主要从DDR缺陷的概念、以DDR作为靶点的基本原理、DDR各类靶向药物的临床研究现状及其在临床应用中的难点与挑战等方面展开综述。
中图分类号:
金奕滋, 林明曦, 张剑. DNA损伤应答缺陷作为乳腺癌治疗靶点的研究进展[J]. 中国癌症杂志, 2022, 32(1): 61-67.
JIN Yizi, LIN Mingxi, ZHANG Jian. Targeting DNA damage response deficiency in the treatment of breast cancer[J]. China Oncology, 2022, 32(1): 61-67.
表 1
除PARP抑制剂外进入临床研究阶段的主要DDR靶向药物"
Target | Role in DDR | Agent | Clinical trial number (phase) | Regimens in clinical trial |
---|---|---|---|---|
ATM | Checkpoint signaling | AZD-0156 | NCT02588105 (Ⅰ) | Monotherapy/combination with olaparib or chemotherapy or other |
ATR | Facilitates the stabilization of replication fork and restart | Ceralasertib (AZD-6738) | NCT03740893 (Ⅱ) | Monotherapy; neoadjuvant and adjuvant |
NCT04090567 (Ⅱ) | Combination with olaparib | |||
NCT03182634 (Ⅱ) | Combination with olaparib | |||
NCT04704661 (Ⅰ) | Combination with DS-8201a | |||
NCT03330847 (Ⅱ) | Combination with olaparib | |||
CHEK1 | Downstream effector kinase of ATR | Prexasertib (LY2606368) | NCT02203513 (Ⅱ) | Monotherapy |
NCT04032080 (Ⅱ) | Combination with DNA-PK inhibitor | |||
NCT02124148 (Ⅰ) | Combination with chemotherapy/targeted therapy | |||
NCT03495323 (Ⅰ) | Combination with PD-L1 inhibitor | |||
WEE1 | Checkpoint kinase negatively regulates entry into mitosis | Adavosertib (AZD-1775) | NCT03330847 (Ⅱ) | Combination with olaparib |
NCT03012477 (Ⅱ) | Combination with chemotherapy | |||
NCT02482311 (Ⅰ) | Monotherapy | |||
NCT02465060 (Ⅱ) | Monotherapy |
表 2
探索DDR靶向药物治疗TNBC的主要临床研究"
Agent | Study (phase) | Regimen | Clinical setting |
---|---|---|---|
PARP inhibitors | |||
Olaparib | PETREMAC NCT02624973 (Ⅱ) | Monotherapy | Neoadjuvant treatment for operable TNBC |
NCT02484404 (Ⅰ/Ⅱ) | Combination with PD-L1 inhibitor | Advanced/recurrent TNBC | |
NCT02498613 (Ⅱ) | Combination with VEGFR inhibitor | Advanced/metastatic TNBC | |
DORA NCT03167619 (Ⅱ) | Combination with PD-L1 inhibitor | Advanced/metastatic TNBC | |
Veliparib | NCT01306032 (Ⅱ) | Combination with chemotherapy | Metastatic TNBC |
BrighTNess NCT02032277 (Ⅲ) | Combination with chemotherapy | Neoadjuvant treatment for operable TNBC | |
Niraparib | KEYNOTE-162 NCT02657889 (Ⅱ) | Combination with PD-1 inhibitor | Advanced/metastatic TNBC |
Talazoparib | NCT03901469 (Ⅱ) | Combination with BET inhibitor | Advanced/metastatic TNBC |
ATR inhibitor | |||
Ceralasertib (AZD-6738) | NCT03740893 (Ⅱ) | Monotherapy | Neoadjuvant and adjuvant treatment for TNBC |
NCT03330847 (Ⅱ) | Combination with olaparib | Metastatic TNBC | |
CHEK1 inhibitor | |||
Prexasertib (LY2606368)+LY3023414 | NCT04032080 (Ⅱ) | Combination with DNA-PK inhibitor | Metastatic TNBC |
NCT02203513 (Ⅱ) | Monotherapy | Advanced TNBC | |
WEE1 inhibitor | |||
Adavosertib (AZD-1775) | NCT03012477 (Ⅱ) | Combination with chemotherapy | Metastatic TNBC |
NCT02482311 (Ⅰ) | Monotherapy | Advanced/metastatic TNBC |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
doi: 10.3322/caac.v68.6 |
[2] |
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5.
doi: 10.1016/j.ccell.2019.02.001 |
[3] |
BURSTEIN M D, TSIMELZON A, POAGE G M, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer[J]. Clin Cancer Res, 2015, 21(7): 1688-1698.
doi: 10.1158/1078-0432.CCR-14-0432 |
[4] |
LEHMANN B D, BAUER J A, CHEN X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7): 2750-2767.
doi: 10.1172/JCI45014 |
[5] |
KALIMUTHO M, PARSONS K, MITTAL D, et al. Targeted therapies for triple-negative breast cancer: combating a stubborn disease[J]. Trends Pharmacol Sci, 2015, 36(12): 822-846.
doi: 10.1016/j.tips.2015.08.009 |
[6] |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70.
doi: 10.1038/nature11412 |
[7] |
STAAF J, GLODZIK D, BOSCH A, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study[J]. Nat Med, 2019, 25(10): 1526-1533.
doi: 10.1038/s41591-019-0582-4 |
[8] |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013 |
[9] |
KLINAKIS A, KARAGIANNIS D, RAMPIAS T. Targeting DNA repair in cancer: current state and novel approaches[J]. Cell Mol Life Sci, 2020, 77(4): 677-703.
doi: 10.1007/s00018-019-03299-8 |
[10] |
PEARL L H, SCHIERZ A C, WARD S E, et al. Therapeutic opportunities within the DNA damage response[J]. Nat Rev Cancer, 2015, 15(3): 166-180.
doi: 10.1038/nrc3891 |
[11] |
FRIEDBERG E C. A brief history of the DNA repair field[J]. Cell Res, 2008, 18(1): 3-7.
doi: 10.1038/cr.2007.113 |
[12] | GOURLEY C, BALMAÑA J, LEDERMANN J A, et al. Moving from poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy[J]. J Clin Oncol, 2019, 37(25): 2257-2269. |
[13] |
CHARTRON E, THEILLET C, GUIU S, et al. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data[J]. Crit Rev Oncol Hematol, 2019, 133: 58-73.
doi: 10.1016/j.critrevonc.2018.10.012 |
[14] |
LUCCHESI J C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster[J]. Genetics, 1968, 59(1): 37-44.
doi: 10.1093/genetics/59.1.37 |
[15] |
DOBZHANSKY T. Genetics of natural populations; recombination and variability in populations of drosophila pseudoobscura[J]. Genetics, 1946, 31: 269-290.
pmid: 20985721 |
[16] |
PATEL A G, SARKARIA J N, KAUFMANN S H. Nonhomologous end joining drives poly (ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells[J]. Proc Natl Acad Sci USA, 2011, 108(8): 3406-3411.
doi: 10.1073/pnas.1013715108 |
[17] |
WILLIAMSON C T, KUBOTA E, HAMILL J D, et al. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53[J]. EMBO Mol Med, 2012, 4(6): 515-527.
doi: 10.1002/emmm.v4.6 |
[18] |
CECCALDI R, LIU J C, AMUNUGAMA R, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair[J]. Nature, 2015, 518(7538): 258-262.
doi: 10.1038/nature14184 |
[19] |
MURAI J, HUANG S Y, DAS B B, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors[J]. Cancer Res, 2012, 72(21): 5588-5599.
doi: 10.1158/0008-5472.CAN-12-2753 |
[20] |
MURAI J, ZHANG Y P, MORRIS J, et al. Rationale for poly (ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition[J]. J Pharmacol Exp Ther, 2014, 349(3): 408-416.
doi: 10.1124/jpet.113.210146 |
[21] |
KIM C, WANG X D, YU Y H. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response[J]. Elife, 2020, 9: e60637.
doi: 10.7554/eLife.60637 |
[22] |
BAKR A, OING C, KÖCHER S, et al. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation[J]. Nucleic Acids Res, 2015, 43(6): 3154-3166.
doi: 10.1093/nar/gkv160 |
[23] | SALDIVAR J C, CORTEZ D, CIMPRICH K A. The essential kinase ATR: ensuring faithful duplication of a challenging genome[J]. Nat Rev Mol Cell Biol, 2017, 18(10): 622-636. |
[24] |
GHELLI LUSERNA DI RORÀ A, CERCHIONE C, MARTINELLI G, et al. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target[J]. J Hematol Oncol, 2020, 13(1): 126.
doi: 10.1186/s13045-020-00959-2 |
[25] |
YUE X Q, BAI C J, XIE D F, et al. DNA-PKcs: a multi-faceted player in DNA damage response[J]. Front Genet, 2020, 11: 607428.
doi: 10.3389/fgene.2020.607428 |
[26] |
WANG Z, SONG Y D, LI S B, et al. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse[J]. J Biol Chem, 2019, 294(11): 3909-3919.
doi: 10.1074/jbc.RA118.005188 |
[27] |
ROBSON M, IM S A, SENKUS E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377(6): 523-533.
doi: 10.1056/NEJMoa1706450 |
[28] |
ROBSON M E, TUNG N, CONTE P, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4): 558-566.
doi: 10.1093/annonc/mdz012 |
[29] |
LITTON J K, RUGO H S, ETTL J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med, 2018, 379(8): 753-763.
doi: 10.1056/NEJMoa1802905 |
[30] |
TUNG N M, ROBSON M E, VENTZ S, et al. TBCRC 048: a phase Ⅱ study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (olaparib expanded)[J]. J Clin Oncol, 2020, 38(15_suppl): 1002.
doi: 10.1200/JCO.2020.38.15_suppl.1002 |
[31] |
FASCHING P A, LINK T, HAUKE J, et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study)[J]. Ann Oncol, 2021, 32(1): 49-57.
doi: 10.1016/j.annonc.2020.10.471 |
[32] |
LOIBL S, O'SHAUGHNESSY J, UNTCH M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(4): 497-509.
doi: 10.1016/S1470-2045(18)30111-6 |
[33] |
EIKESDAL H P, YNDESTAD S, ELZAWAHRY A, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer[J]. Ann Oncol, 2021, 32(2): 240-249.
doi: 10.1016/j.annonc.2020.11.009 |
[34] | GATTI-MAYS M E, KARZAI F H, SOLTANI S N, et al. A phase Ⅱ single arm pilot study of the CHK1 inhibitor prexasertib (LY2606368) in BRCA wild-type, advanced triple-negative breast cancer[J]. Oncologist, 2020, 25(12): e1013-e1824. |
[35] |
MATEO J, LORD C J, SERRA V, et al. A decade of clinical development of PARP inhibitors in perspective[J]. Ann Oncol, 2019, 30(9): 1437-1447.
doi: 10.1093/annonc/mdz192 |
[36] |
FEDERICI G, SODDU S. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers[J]. J Exp Clin Cancer Res, 2020, 39(1): 46.
doi: 10.1186/s13046-020-01554-6 |
[37] | BORG A, HAILE R W, MALONE K E, et al. Characterization of BRCA1 and BRCA2 deleterious mutations and variants of unknown clinical significance in unilateral and bilateral breast cancer: the WECARE study[J]. Hum Mutat, 2010, 31(3): E1200-E1240. |
[38] |
MILLOT G A, CARVALHO M A, CAPUTO S M, et al. A guide for functional analysis of BRCA1 variants of uncertain significance[J]. Hum Mutat, 2012, 33(11): 1526-1537.
doi: 10.1002/humu.v33.11 |
[39] |
TOLAND A E, ANDREASSEN P R. DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment[J]. J Med Genet, 2017, 54(11): 721-731.
doi: 10.1136/jmedgenet-2017-104707 |
[40] | ADZHUBEI I A, SCHMIDT S, PESHKIN L, et al. A method and server for predicting damaging missense mutations[J]. Nat Methods, 2010, 7(4): 248-249. |
[41] |
NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function[J]. Nucleic Acids Res, 2003, 31(13): 3812-3814.
doi: 10.1093/nar/gkg509 |
[42] |
FINDLAY G M, DAZA R M, MARTIN B, et al. Accurate classification of BRCA1 variants with saturation genome editing[J]. Nature, 2018, 562(7726): 217-222.
doi: 10.1038/s41586-018-0461-z |
[1] | 章箎, 陈佳慧, 林瑾仪, 王妍, 张斯加, 朱玮, 程蕾蕾. 一种新型《乳腺癌治疗相关心血管毒性临床评分表》的价值分析[J]. 中国癌症杂志, 2022, 32(1): 54-60. |
[2] | 《中国乳腺癌新辅助治疗专家共识(2022年版)》专家组. 中国乳腺癌新辅助治疗专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(1): 80-89. |
[3] | 张小艳, 李清祥, 刘 勇, 李 航, 仇丽娟, 封欣然, 谭立明 . HMGB1与乳腺癌患者临床病理学特征及免疫指标的相关性研究[J]. 中国癌症杂志, 2021, 31(9): 783-788. |
[4] | 曹爱玲, 曹 喆, 周 剑. 多西他赛联合胸腺肽α1对大鼠乳腺癌免疫微环境中Treg数量的影响及其机制研究[J]. 中国癌症杂志, 2021, 31(9): 799-806. |
[5] | 姚 嘉, 李冠乔, 杨时平, 苏慧銮 . Hsa-miR-98-5p/DKK3信号轴对乳腺癌细胞生物学行为的影响[J]. 中国癌症杂志, 2021, 31(9): 807-816. |
[6] | 丛斌斌, 王永胜. 激素受体阳性早期乳腺癌治疗现状与挑战[J]. 中国癌症杂志, 2021, 31(8): 689-696. |
[7] | 朱逸晖, 李 婷, 胡夕春. Trastuzumab deruxtecan的临床研究进展及展望——HER2耐药患者的新希望[J]. 中国癌症杂志, 2021, 31(8): 754-761. |
[8] | 张迎强, 林岩松 . 90 Y微球选择性内放射治疗在结直肠癌肝转移中的应用及研究进展[J]. 中国癌症杂志, 2021, 31(8): 762-768. |
[9] | 韦 煜, 张挺维, 何 屹, 李 俊, 毕建斌, 曾 宇, 万里军, 吴高亮, 王焕昇, 张 军, 朱 崴, 瞿元元, 朱 耀, 叶定伟 . 氟唑帕利治疗转移性去势抵抗性前列腺癌的初步有效性及安全性研究[J]. 中国癌症杂志, 2021, 31(7): 561-566. |
[10] | 高鹤丽, 徐 近, 虞先濬. 分化好的胃肠胰神经内分泌瘤G3的诊治新进展[J]. 中国癌症杂志, 2021, 31(7): 567-573. |
[11] | 丁高峰, 郭雷鸣, 陆寓非. 乳腺癌患者HER2和BRCA1表达与放疗敏感性的关系研究[J]. 中国癌症杂志, 2021, 31(7): 589-595. |
[12] | 金优萍, 李录英, 周 平. 长链非编码RNA STMN1P2在乳腺癌中的作用及机制研究[J]. 中国癌症杂志, 2021, 31(7): 596-604. |
[13] | 谢金芳, 曹春雨, 任 雪, 田家俊, 吕亚丰, 黄晓飞 . 萝卜硫素对小鼠乳腺癌4T1细胞上皮-间质转化、增殖和迁移的影响研究[J]. 中国癌症杂志, 2021, 31(7): 605-615. |
[14] | 谢梦青, 储香玲, 周 娟, 苏春霞. 小细胞肺癌免疫治疗相关生物标志物研究进展[J]. 中国癌症杂志, 2021, 31(7): 635-639. |
[15] | 李 崴, 张山岭, 陶英杰, 王旭东. T细胞免疫代谢调控与免疫检查点抑制剂联合应用的现状及研究进展[J]. 中国癌症杂志, 2021, 31(7): 640-646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn