[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3
|
[2] |
CULP M B, SOERJOMATARAM I, EFSTATHIOU J A, et al. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77(1): 38-52.
doi: 10.1016/j.eururo.2019.08.005
|
[3] |
中国抗癌协会泌尿男生殖系统肿瘤专业委员会前列腺癌学组. 前列腺癌筛查中国专家共识(2021年版)[J]. 中国癌症杂志, 2021, 31(5): 435-440.
|
|
Prostate Cancer Group, Urogenital Tumor Professional Committee, Chinese Anti-cancer Association. Urogenital Tumor Professional Committee, Chinese Anti-cancer Association. Chinese expert consensus on prostate cancer screening (2021 version)[J]. China Oncol, 2021, 31(5): 435-440.
|
[4] |
MOLLICA V, RIZZO A, ROSELLINI M, et al. Bone targeting agents in patients with metastatic prostate cancer: State of the art[J]. Cancers (Basel), 2021, 13(3): 546.
doi: 10.3390/cancers13030546
|
[5] |
PANG K, XIE C Y, YANG Z R, et al. Monitoring circulating prostate cancer cells by in vivo flow cytometry assesses androgen deprivation therapy on metastasis[J]. Cytometry A, 2018, 93(5): 517-524.
doi: 10.1002/cyto.a.v93.5
|
[6] |
ZHANG Y, TONERI M, MA H Y, et al. Real-time GFP intravital imaging of the differences in cellular and angiogenic behavior of subcutaneous and orthotopic nude-mouse models of human PC-3 prostate cancer[J]. J Cell Biochem, 2016, 117(11): 2546-2551.
doi: 10.1002/jcb.v117.11
|
[7] |
IMASHIRO C, SHIMIZU T. Fundamental technologies and recent advances of cell-sheet-based tissue engineering[J]. Int J Mol Sci, 2021, 22(1): E425.
|
[8] |
THUMMARATI P, KINO-OKA M. Effect of co-culturing fibroblasts in human skeletal muscle cell sheet on angiogenic cytokine balance and angiogenesis[J]. Front Bioeng Biotechnol, 2020, 8: 578140.
doi: 10.3389/fbioe.2020.578140
|
[9] |
WANG Y, ZHOU S K, YANG R X, et al. Bioengineered bladder patches constructed from multilayered adipose-derived stem cell sheets for bladder regeneration[J]. Acta Biomater, 2019, 85: 131-141.
doi: 10.1016/j.actbio.2018.12.016
|
[10] |
ZHOU S K, YANG R X, ZOU Q S, et al. Fabrication of tissue-engineered bionic urethra using cell sheet technology and labeling by ultrasmall superparamagnetic iron oxide for full-thickness urethral reconstruction[J]. Theranostics, 2017, 7(9): 2509-2523.
doi: 10.7150/thno.18833
|
[11] |
AKIMOTO J, NAKAYAMA M, TAKAGI S, et al. Efficient intrahepatic tumor generation by cell sheet transplantation to fabricate orthotopic hepatocarcinoma-bearing model mice for drug testing[J]. J Biomed Mater Res A, 2019, 107(5): 1071-1079.
doi: 10.1002/jbm.a.v107.5
|
[12] |
ALSHAREEDA A T, ALSOWAYAN B, ALMUBARAK A, et al. Exploring the potential of mesenchymal stem cell sheet on the development of hepatocellular carcinoma in vivo[J]. J Vis Exp, 2018, (139): 57805.
|
[13] |
AKIMOTO J, NAKAYAMA M, TAKAGI S, et al. Improved in vivo subcutaneous tumor generation by cancer cell sheet transplantation[J]. Anticancer Res, 2018, 38(2): 671-676.
|
[14] |
BAL E, PARK H S, BELAID-CHOUCAIR Z, et al. Mutations in ACTRT1 and its enhancer RNA elements lead to aberrant activation of Hedgehog signaling in inherited and sporadic basal cell carcinomas[J]. Nat Med, 2017, 23(10): 1226-1233.
doi: 10.1038/nm.4368
|
[15] |
LÓPEZ DE ANDRÉS J, GRIÑÁN-LISÓN C, JIMÉNEZ G, et al. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment[J]. J Hematol Oncol, 2020, 13(1): 136.
doi: 10.1186/s13045-020-00966-3
|
[16] |
NAMEKAWA T, IKEDA K, HORIE-INOUE K, et al. Application of prostate cancer models for preclinical study: advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells[J]. Cells, 2019, 8(1): E74.
|
[17] |
SAKAI Y, YAMANOUCHI K, OHASHI K, et al. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice[J]. Biomaterials, 2015, 65: 66-75.
doi: 10.1016/j.biomaterials.2015.06.046
|
[18] |
WANG Z F, HAN L, SUN T Y, et al. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits[J]. J Biomed Mater Res A, 2021, 109(4): 538-550.
doi: 10.1002/jbm.a.v109.4
|
[19] |
PAVLOU M, SHAH M, GIKAS P, et al. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model[J]. Acta Biomater, 2019, 96: 247-257.
doi: 10.1016/j.actbio.2019.07.011
|
[20] |
WU H W, HE Z X, LI X N, et al. Efficient and consistent orthotopic osteosarcoma model by cell sheet transplantation in the nude mice for drug testing[J]. Front Bioeng Biotechnol, 2021, 9: 690409.
doi: 10.3389/fbioe.2021.690409
|
[21] |
CHENG Y Q, WANG S B, LIU J H, et al. Modifying the tumour microenvironment and reverting tumour cells: new strategies for treating malignant tumours[J]. Cell Prolif, 2020, 53(8): e12865.
|
[22] |
RIBATTI D, PEZZELLA F. Overview on the different patterns of tumor vascularization[J]. Cells, 2021, 10(3): 639.
doi: 10.3390/cells10030639
|
[23] |
DE PALMA M, BIZIATO D, PETROVA T V. Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457-474.
doi: 10.1038/nrc.2017.51
|