中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (3): 268-273.doi: 10.19401/j.cnki.1007-3639.2022.03.010
收稿日期:
2021-08-10
修回日期:
2021-11-28
出版日期:
2022-03-30
发布日期:
2022-04-02
通信作者:
陈颢
E-mail:chengkll@sina.com
Received:
2021-08-10
Revised:
2021-11-28
Published:
2022-03-30
Online:
2022-04-02
Contact:
CHEN Hao
E-mail:chengkll@sina.com
文章分享
摘要:
胰腺癌是发病率高、进展速度快且生存率低的一种恶性肿瘤,临床上亟待寻找可用于精准治疗或提高预后的新靶标。近年来研究发现,滋养层细胞表面抗原2(trophoblast cell surface antigen 2,TROP2)在多种恶性肿瘤中高表达,通过细胞表面受体信号参与恶性肿瘤细胞的增殖、迁移及黏附等进展过程。概述TROP2在胰腺癌中的表达、参与介导的信号转导通路及以TROP2为靶点的抗肿瘤药物的研究进展,为靶向TROP2在胰腺癌治疗中的机制和提高胰腺癌患者预后方面提供参考。
中图分类号:
李语婕, 陈颢. 靶向TROP2在胰腺癌治疗中的潜力[J]. 中国癌症杂志, 2022, 32(3): 268-273.
LI Yujie, CHEN Hao. Potential of targeting TROP2 in the treatment of pancreatic cancer[J]. China Oncology, 2022, 32(3): 268-273.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
DROUILLARD A, MANFREDI S, LEPAGE C, et al. Epidemiology of pancreatic cancer[J]. Bull Du Cancer, 2018, 105(1): 63-69.
doi: 10.1016/j.bulcan.2017.11.004 |
[3] |
GIOVANNETTI E, VAN DER BORDEN C L, FRAMPTON A E, et al. Never let it go: stopping key mechanisms underlying metastasis to fight pancreatic cancer[J]. Semin Cancer Biol, 2017, 44: 43-59.
doi: 10.1016/j.semcancer.2017.04.006 |
[4] |
CARIOLI G, MALVEZZI M, BERTUCCIO P, et al. European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer[J]. Ann Oncol, 2021, 32(4): 478-487.
doi: 10.1016/j.annonc.2021.01.006 |
[5] |
FERLAY J, PARTENSKY C, BRAY F. More deaths from pancreatic cancer than breast cancer in the EU by 2017[J]. Acta Oncol, 2016, 55(9/10): 1158-1160.
doi: 10.1080/0284186X.2016.1197419 |
[6] |
RAHIB L, SMITH B D, AIZENBERG R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11): 2913-2921.
doi: 10.1158/0008-5472.CAN-14-0155 |
[7] |
PERRONE E, MANARA P, LOPEZ S, et al. Sacituzumab govitecan, an antibody-drug conjugate targeting trophoblast cell-surface antigen 2, shows cytotoxic activity against poorly differentiated endometrial adenocarcinomas in vitro and in vivo[J]. Mol Oncol, 2020, 14(3): 645-656.
doi: 10.1002/mol2.v14.3 |
[8] |
ZAMAN S, JADID H, DENSON A C, et al. Targeting Trop-2 in solid tumors: future prospects[J]. Onco Targets Ther, 2019, 12: 1781-1790.
doi: 10.2147/OTT |
[9] | LENÁRT S, LENÁRT P, ŠMARDA J, et al. Trop2: jack of all trades, master of none[J]. Cancers (Basel), 2020, 12(11): E3328. |
[10] |
BARDIA A, MESSERSMITH W A, KIO E A, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase Ⅰ/Ⅱ IMMU-132-01 basket trial[J]. Ann Oncol, 2021, 32(6): 746-756.
doi: 10.1016/j.annonc.2021.03.005 |
[11] | 张玉洁, 孙怡琳, 朱苹, 等. 人肿瘤关联钙信号转导因子2的生物信息学分析[J]. 医学研究生学报, 2020, 33(6): 570-576. |
ZHANG Y J, SUN Y L, ZHU P, et al. Bioinformatic analysis of the structure and function of human TACSTD2[J]. J Med Postgrad, 2020, 33(6): 570-576. | |
[12] | 周童, 张远鹏, 张启文. 靶向抑制TROP2基因表达对胰腺癌细胞生物学特性的影响研究[J]. 癌症进展, 2018, 16(3): 290-294. |
ZHOU T, ZHANG Y P, ZHANG Q W. Effect of targeted inhibition of TROP2 gene expression on the biological characteristics of pancreatic cancer cells[J]. Oncol Prog, 2018, 16(3): 290-294. | |
[13] |
CARDILLO T M, GOVINDAN S V, SHARKEY R M, et al. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers[J]. Bioconjug Chem, 2015, 26(5): 919-931.
doi: 10.1021/acs.bioconjchem.5b00223 |
[14] |
CUBAS R, ZHANG S, LI M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer, 2010, 9: 253.
doi: 10.1186/1476-4598-9-253 |
[15] |
LI X X, TENG S F, ZHANG Y Y, et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT[J]. Oncotarget, 2017, 8(29): 47052-47063.
doi: 10.18632/oncotarget.v8i29 |
[16] |
ZHAO W, JIA L, KUAI X, et al. The role and molecular mechanism of Trop2 induced epithelial-mesenchymal transition through mediated β-catenin in gastric cancer[J]. Cancer Med, 2019, 8(3): 1135-1147.
doi: 10.1002/cam4.2019.8.issue-3 |
[17] |
GUERRA E, TREROTOLA M, RELLI V, et al. Trop-2 induces ADAM10-mediated cleavage of E-cadherin and drives EMT-less metastasis in colon cancer[J]. Neoplasia, 2021, 23(9): 898-911.
doi: 10.1016/j.neo.2021.07.002 |
[18] |
SUN X T, XING G Y, ZHANG C, et al. Knockdown of Trop2 inhibits proliferation and migration and induces apoptosis of endometrial cancer cells via AKT/β-catenin pathway[J]. Cell Biochem Funct, 2020, 38(2): 141-148.
doi: 10.1002/cbf.v38.2 |
[19] | ZHAO W, KUAI X W, ZHOU X Y, et al. Trop2 is a potential biomarker for the promotion of EMT in human breast cancer[J]. Oncol Rep, 2018, 40(2): 759-766. |
[20] |
LIU T, LIU Y Y, BAO X X, et al. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway[J]. PLoS One, 2013, 8(9): e75864.
doi: 10.1371/journal.pone.0075864 |
[21] |
GUAN H Y, GUO Z J, LIANG W W, et al. Trop2 enhances invasion of thyroid cancer by inducing MMP2 through ERK and JNK pathways[J]. BMC Cancer, 2017, 17(1): 486.
doi: 10.1186/s12885-017-3475-2 |
[22] | HOU J B, LV A, DENG Q, et al. TROP2 promotes the proliferation and metastasis of glioblastoma cells by activating the JAK2/STAT3 signaling pathway[J]. Oncol Rep, 2019, 41(2): 753-764. |
[23] | TANG G X, TANG Q, JIA L Z, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/AKT signaling pathway[J]. Int J Mol Med, 2019, 44(6): 2161-2170. |
[24] | 仇金荣, 唐奇, 林红, 等. 人滋养层细胞表面抗原2在人胰腺癌中的表达及其临床意义[J]. 中华医学杂志, 2011, 91(2): 103-106. |
QIU J R, TANG Q, LIN H, et al. Expression and clinical significance of Trop-2 in human pancreatic cancer[J]. Natl Med J China, 2011, 91(2): 103-106. | |
[25] |
FONG D, MOSER P, KRAMMEL C, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer[J]. Br J Cancer, 2008, 99(8): 1290-1295.
doi: 10.1038/sj.bjc.6604677 |
[26] |
SHVARTSUR A, BONAVIDA B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications[J]. Genes Cancer, 2015, 6(3/4): 84-105.
doi: 10.18632/genesandcancer.v6i3-4 |
[27] |
MCDOUGALL A R A, TOLCOS M, HOOPER S B, et al. Trop2: from development to disease[J]. Dev Dyn, 2015, 244(2): 99-109.
doi: 10.1002/dvdy.v244.2 |
[28] |
MORI Y, AKITA K, OJIMA K, et al. Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility[J]. J Biol Chem, 2019, 294(30): 11513-11524.
doi: 10.1074/jbc.RA119.008084 |
[29] | 于群, 苗庆芳. 抗肿瘤药物靶点Trop2研究进展[J]. 中国医药生物技术, 2018, 13(4): 353-357. |
YU Q, MIAO Q F. Research progress in antitumor molecular target Trop2[J]. Chin Med Biotechnol, 2018, 13(4): 353-357. | |
[30] |
GUERRA E, TREROTOLA M, TRIPALDI R, et al. Trop-2 induces tumor growth through AKT and determines sensitivity to AKT inhibitors[J]. Clin Cancer Res, 2016, 22(16): 4197-4205.
doi: 10.1158/1078-0432.CCR-15-1701 |
[31] |
IKEDA M, YAMAGUCHI M, KATO K, et al. Pr1E11, a novel anti-TROP-2 antibody isolated by adenovirus-based antibody screening, recognizes a unique epitope[J]. Biochem Biophys Res Commun, 2015, 458(4): 877-882.
doi: 10.1016/j.bbrc.2015.02.051 |
[32] |
SHARKEY R M, MCBRIDE W J, CARDILLO T M, et al. Enhanced delivery of SN-38 to human tumor xenografts with an anti-trop-2-SN-38 antibody conjugate (sacituzumab govitecan)[J]. Clin Cancer Res, 2015, 21(22): 5131-5138.
doi: 10.1158/1078-0432.CCR-15-0670 |
[33] |
WAHBY S, FASHOYIN-AJE L, OSGOOD C L, et al. FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer[J]. Clin Cancer Res, 2021, 27(7): 1850-1854.
doi: 10.1158/1078-0432.CCR-20-3119 |
[34] |
CRISCITIELLO C, MORGANTI S, CURIGLIANO G. Antibody-drug conjugates in solid tumors: a look into novel targets[J]. J Hematol Oncol, 2021, 14(1): 20.
doi: 10.1186/s13045-021-01035-z |
[35] |
BARDIA A, TOLANEY S M, PUNIE K, et al. Biomarker analyses in the phase Ⅲ ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer[J]. Ann Oncol, 2021, 32(9): 1148-1156.
doi: 10.1016/j.annonc.2021.06.002 |
[36] |
BARDIA A, HURVITZ S A, TOLANEY S M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer[J]. N Engl J Med, 2021, 384(16): 1529-1541.
doi: 10.1056/NEJMoa2028485 |
[37] |
STROP P, TRAN T T, DORYWALSKA M, et al. RN927C, a site-specific trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models[J]. Mol Cancer Ther, 2016, 15(11): 2698-2708.
doi: 10.1158/1535-7163.MCT-16-0431 |
[38] |
OKAJIMA D, YASUDA S, MAEJIMA T, et al. Datopotamab deruxtecan, a novel TROP2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells[J]. Mol Cancer Ther, 2021, 20(12): 2329-2340.
doi: 10.1158/1535-7163.MCT-21-0206 |
[39] |
MAO Y, WANG X Y, ZHENG F, et al. The tumor-inhibitory effectiveness of a novel anti-Trop2 Fab conjugate in pancreatic cancer[J]. Oncotarget, 2016, 7(17): 24810-24823.
doi: 10.18632/oncotarget.v7i17 |
[40] |
ROSSI E A, ROSSI D L, CARDILLO T M, et al. Redirected T-cell killing of solid cancers targeted with an anti-CD3/Trop-2-bispecific antibody is enhanced in combination with interferon-α[J]. Mol Cancer Ther, 2014, 13(10): 2341-2351.
doi: 10.1158/1535-7163.MCT-14-0345 |
[41] |
CHEN H P, WEI F J, YIN M, et al. CD27 enhances the killing effect of CAR-T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors[J]. Cancer Immunol Immunother, 2021, 70(7): 2059-2071.
doi: 10.1007/s00262-020-02838-8 |
[42] |
NISHIMURA T, MITSUNAGA M, SAWADA R, et al. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody[J]. Cancer Med, 2019, 8(18): 7781-7792.
doi: 10.1002/cam4.v8.18 |
[1] | 冯欣滢, 王冰, 刘培峰. 腹膜转移癌腹腔化疗的创新与挑战[J]. 中国癌症杂志, 2024, 34(9): 827-837. |
[2] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[3] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
[4] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[5] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[6] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[7] | 陈亦凡, 李婷, 王碧芸. CCR8在肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(3): 299-305. |
[8] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[9] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[10] | 徐梓淇, 胡睿智, 李军建, 王红霞, 桑友洲. 甲基化驱动基因IFFO1在胰腺癌诊断和预后中的作用及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2024, 34(11): 998-1010. |
[11] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[12] | 金奕滋, 林明曦, 曾铖, 郭晴, 张剑. 雌激素受体低表达早期乳腺癌的研究进展[J]. 中国癌症杂志, 2024, 34(10): 972-978. |
[13] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
[14] | 刘雪柔, 杨玉梅, 赵倩, 荣翔宇, 刘伟, 郑瑞洁, 庞金龙, 李娴, 李姗姗. 谷氨酰胺代谢相关蛋白在肿瘤转移中的作用研究进展[J]. 中国癌症杂志, 2024, 34(1): 97-103. |
[15] | 康殷楠, 陈顺, 解有成, 郑英, 何昱静, 李初谊, 于晓辉. 抗体药物偶联物在HER2阳性晚期胃癌中的应用进展和展望[J]. 中国癌症杂志, 2023, 33(8): 790-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn