中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (8): 688-697.doi: 10.19401/j.cnki.1007-3639.2022.08.003
收稿日期:
2022-07-01
修回日期:
2022-07-20
出版日期:
2022-08-30
发布日期:
2022-09-19
通信作者:
刘强
E-mail:zhangy583@mail2.sysu.edu.cn;victorlq@hotmail.com
作者简介:
张 羽(ORCID:0000-0002-1339-8367),中山大学孙逸仙纪念医院乳腺肿瘤中心硕士研究生,E-mail: zhangy583@mail2.sysu.edu.cnReceived:
2022-07-01
Revised:
2022-07-20
Published:
2022-08-30
Online:
2022-09-19
Contact:
LIU Qiang
E-mail:zhangy583@mail2.sysu.edu.cn;victorlq@hotmail.com
摘要:
在全球范围内,乳腺癌是女性最常见的恶性肿瘤。近年来,迅速扩大的基因组学知识体系不仅揭示了恶性肿瘤的复杂性,也使得恶性肿瘤的治疗范式从以肿瘤类型为导向逐渐转向以基因为导向,根据生物标志物分析为患者进行个体化治疗。目前大量研究已证实从患者获得肿瘤分子图谱优化了癌症个性化治疗方案的选择,以及对治疗反应、耐药及肿瘤复发的监测。而液体活检,通过对体液中肿瘤衍生材料所包含的基因组等数据进行分析,可以获得关于个体患者肿瘤特征的详细信息,为基于精准医学的治疗开辟新思路。在乳腺癌精准治疗中,液体活检可以预测生存预后、检测微小残留疾病(minimal residual disease,MRD)、监测治疗效果,在(新)辅助治疗及解救治疗中发挥作用。虽然液体活检在乳腺癌精准治疗方面的研究取得了令人瞩目的进展,但是仍存在一些问题,还需要更多的工作来进一步改进技术。本文将就近年来液体活检在乳腺癌精准治疗中的应用研究进展进行综述,并对未来的发展趋势予以展望。
中图分类号:
张羽, 刘强. 液体活检在乳腺癌精准治疗中的应用进展及展望[J]. 中国癌症杂志, 2022, 32(8): 688-697.
ZHANG Yu, LIU Qiang. Advances of liquid biopsy in precision treatment of breast cancer[J]. China Oncology, 2022, 32(8): 688-697.
表1
乳腺癌患者液体活检分析的关键研究"
Study (year) | Inclusion criteria | Detection method | Findings |
---|---|---|---|
Studies on CTCs | |||
Trapp E, et al [ (2019) | Lymph node positive and high risk lymph node negative breast cancer (n=1 087) | CellSearch System | The presence of CTCs 2 years after chemotherapy was associated with decreased OS (HR=3.91, 95% CI: 2.04-7.52, P<0.001) and DFS (HR=2.31, 95% CI: 1.50-3.55, P<0.001) |
Sparano J, et al [ | Lymph node positive and high risk lymph node negative breast cancer (n=547) | CellSearch System | Positive CTC assay result was associated with a 13.1-fold higher risk of recurrence (HR=13.1, 95% CI: 4.7-36.3) |
Janni W J, et al [ | Nonmetastatic breast cancer (various subtypes) (n=3 173) | CellSearch System | The presence of CTCs at the time of primary diagnosis was an independent prognostic factor for DFS (HR=1.82, 95% CI: 1.47-2.26), DDFS (HR=1.89, 95% CI: 1.49-2.40), BCSS (HR=2.04, 95% CI: 1.52-2.75), and overall survival (HR=1.97, 95% CI: 1.51-2.59) |
Bidard, et al [ (2014) | Metastatic breast cancer (various subtypes) (n=1 944) | CellSearch System | CTC count improves the prognostication of metastatic breast cancer when added to full clinicopathological predictive models (PFS LR=38.4, 95% CI: 21.9-60.3, P<0.000 1; OS LR=64.9, 95% CI: 41.3-93.4, P<0.000 1) |
Studies on ctDNA | |||
Kim M H, et al [ | Stage Ⅱ-Ⅲ TNBC (n=465) | Low-pass whole genome sequencing (LP-WGS) | The baseline ctDNA CNA burden on LP-WGS before neoadjuvant chemotherapy robustly predicts recurrence risk in stage Ⅱ-Ⅲ TNBC patients. The ctDNAⅠ-score showed prognostic value independently from pCR status, suggesting ctDNAⅠ-score can serve as a useful clinical determinant for escalating or de-escalating (neo)adjuvant strategy in TNBC patients |
Zhou Q, et al [ (2022) | Early breast cancer who underwent NAC (various subtypes) (n=187) | Targeted NGS of 93 frequently mutated genes in breast cancer | ctDNA detection at metastasis was significantly associated with higher RCB (OR=0.062, 95% CI: 0.01-0.48, P=0.007 7). Of the 31 patients with detectable ctDNA at metastasis, 30 patients (96.8%) were non-responders (RCB Ⅱ, n=8; RCB Ⅲ, n=22) and only one patient responded to the treatment (RCBⅠ) |
Shaw J, et al [ (2022) | Primary breast cancer underwent surgery and adjuvant therapy (various subtypes) (n=188) | mPCR-NGS | Patients with a positive ctDNA test had poorer RFS (HR=47.5, 95% CI: 18.5-161.4, P<0.001) from surgery; OS was also significantly reduced for patients who were ctDNA positive (HR=84.15, 95% CI: 16.43-1 538.00, P <0.001) |
Magbanua M J M, et al [ | High-risk early breast cancer (various subtypes) (n=84) | Ultra-deep sequencing | Lack of ctDNA clearance was a significant predictor of poor response and metastatic recurrence (non-pCR OR=4.33, P=0.012), while clearance was associated with improved survival even in patients who did not achieve pCR |
Li S, et al [ (2020) | Early breast cancer who underwent NAC (various subtypes) (n=52) | NGS of 1 021 cancer- related genes | ctDNA tracking during NAC outperformed imaging in predicting the overall response to NAC; Positive baseline ctDNA was significantly associated with worse DFS (P=0.011) and OS (P=0.004) in patients with early breast cancer, especially in estrogen receptor-negative patients |
Garcia-Murillas I, et al [ | Early-stage breast cancer (various subtypes) (n=101) | dPCR | Detection of ctDNA during follow-up was associated with a high risk of future relapse of early-stage breast cancer (HR=25.2, 95% CI: 6.7-95.6, P<0.001) |
Allouchery V, et al [ | Early breast cancer patients who completed at least 2 years of AI adjuvant treatment and experienced a documented relapse after the end of their treatment (various subtypes) (n=42) | ddPCR | No circulating ESR1 mutation was detectable at the end of AI adjuvant therapy. At first relapse, 5.3% of the patients (2 of 38) had a detectable circulating ESR1 mutation. At time of progression on first-line metastatic treatment, 33% of the patients (7 of 21) under AI had a detectable circulating ESR1 mutation compared with none of the patients under chemotherapy (0 of 10) |
Stover D G, et al [ | Metastatic TNBC (n=164) | Low-coverage genome-wide sequencing | Evaluation of cfDNA tumor fraction was feasible for nearly all patients, and tumor fraction≥10% was associated with significantly worse survival (HR=2.14, 95% CI: 1.4 to 3.8, P<0.001) |
Dawson S J, et al [ | Metastatic breast cancer who were receiving systemic therapy (various subtypes) (n=30) | ddPCR, tagged-amplicon deep sequencing, ADVIA Centaur immunoassay, CellSearch | ctDNA was successfully detected in 29 of the 30 women studied (97%); CA15-3 and CTCs were detected in 21 of 27 (78%) and 26 of 30 women (87%), respectively. ctDNA levels showed a greater correlation with changes in tumor burden than did CA15-3 or CTCs. ctDNA provided the earliest measure of treatment response in 10 of 19 women (53%), with an average lead time of 5 months before imaging |
[1] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
doi: 10.3322/caac.21442 |
[2] |
LOIBL S, POORTMANS P, MORROW M, et al. Breast cancer[J]. Lancet, 2021, 397(10286): 1750-1769.
doi: 10.1016/S0140-6736(20)32381-3 |
[3] |
WHELER J, LEE J J, KURZROCK R. Unique molecular landscapes in cancer: implications for individualized, curated drug combinations[J]. Cancer Res, 2014, 74(24): 7181-7184.
doi: 10.1158/0008-5472.CAN-14-2329 |
[4] |
TSIMBERIDOU A M, FOUNTZILAS E, NIKANJAM M, et al. Review of precision cancer medicine: evolution of the treatment paradigm[J]. Cancer Treat Rev, 2020, 86: 102019.
doi: 10.1016/j.ctrv.2020.102019 |
[5] |
KURZROCK R, GILES F J. Precision oncology for patients with advanced cancer: the challenges of malignant snowflakes[J]. Cell Cycle, 2015, 14(14): 2219-2221.
doi: 10.1080/15384101.2015.1041695 |
[6] | DUMBRAVA E I, MERIC-BERNSTAM F. Personalized cancer therapy-leveraging a knowledge base for clinical decision-making[J]. Cold Spring Harb Mol Case Stud, 2018, 4(2): a001578. |
[7] |
LONE S N, NISAR S, MASOODI T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments[J]. Mol Cancer, 2022, 21(1): 79.
doi: 10.1186/s12943-022-01543-7 |
[8] |
TAY T K Y, TAN P H. Liquid biopsy in breast cancer: a focused review[J]. Arch Pathol Lab Med, 2021, 145(6): 678-686.
doi: 10.5858/arpa.2019-0559-RA |
[9] |
YOUNG R, PAILLER E, BILLIOT F, et al. Circulating tumor cells in lung cancer[J]. Acta Cytol, 2012, 56(6): 655-660.
doi: 10.1159/000345182 |
[10] |
KOWALIK A, KOWALEWSKA M, GÓŹDŹ S. Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors[J]. Transl Res, 2017, 185: 58-84.e15.
doi: 10.1016/j.trsl.2017.04.002 |
[11] |
ANDREE K C, VAN DALUM G, TERSTAPPEN L W M M. Challenges in circulating tumor cell detection by the CellSearch system[J]. Mol Oncol, 2016, 10(3): 395-407.
doi: 10.1016/j.molonc.2015.12.002 |
[12] |
SEQUIST L V, NAGRATH S, TONER M, et al. The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients[J]. J Thorac Oncol, 2009, 4(3): 281-283.
doi: 10.1097/JTO.0b013e3181989565 |
[13] |
YANG L Y, LANG J C, BALASUBRAMANIAN P, et al. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells[J]. Biotechnol Bioeng, 2009, 102(2): 521-534.
doi: 10.1002/bit.22066 |
[14] | POKLEPOVIC A S, WAN W, WU W G, et al. ApoStream, an antibody-independent platform, compared to CellSearch for enumeration of circulating tumor cells (CTCs) in patients with metastatic prostate cancer[J]. J Clin Oncol, 2012, 30(15_suppl): e21058. |
[15] | FLEISCHHACKER M, SCHMIDT B. Circulating nucleic acids (CNAs) and cancer: a survey[J]. Biochim Biophys Acta BBA Rev Cancer, 2007, 1775(1): 181-232. |
[16] | UNDERHILL H R, KITZMAN J O, HELLWIG S, et al. Fragment length of circulating tumor DNA[J]. PLoS Genet, 2016, 12(7): e1006162. |
[17] |
DIEHL F, SCHMIDT K, CHOTI M A, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nat Med, 2008, 14(9): 985-990.
doi: 10.1038/nm.1789 |
[18] | PARKINSON C A, GALE D, PISKORZ A M, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study[J]. PLoS Med, 2016, 13(12): e1002198. |
[19] |
CHAUDHURI A A, CHABON J J, LOVEJOY A F, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling[J]. Cancer Discov, 2017, 7(12): 1394-1403.
doi: 10.1158/2159-8290.CD-17-0716 |
[20] |
SIRAVEGNA G, MARSONI S, SIENA S, et al. Integrating liquid biopsies into the management of cancer[J]. Nat Rev Clin Oncol, 2017, 14(9): 531-548.
doi: 10.1038/nrclinonc.2017.14 |
[21] |
HAN X, WANG J Y, SUN Y L. Circulating tumor DNA as biomarkers for cancer detection[J]. Genom Proteom Bioinform, 2017, 15(2): 59-72.
doi: 10.1016/j.gpb.2016.12.004 |
[22] |
DIEHL F, LI M, DRESSMAN D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors[J]. Proc Natl Acad Sci USA, 2005, 102(45): 16368-16373.
doi: 10.1073/pnas.0507904102 |
[23] | HOLM M, ANDERSSON E, OSTERLUND E, et al. Detection of KRAS mutations in liquid biopsies from metastatic colorectal cancer patients using droplet digital PCR, Idylla, and next generation sequencing[J]. PLoS One, 2020, 15(11): e0239819. |
[24] | LEARY R J, KINDE I, DIEHL F, et al. Development of personalized tumor biomarkers using massively parallel sequencing[J]. Sci Transl Med, 2010, 2(20): 20ra14. |
[25] | FORSHEW T, MURTAZA M, PARKINSON C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J]. Sci Transl Med, 2012, 4(136): 136ra68. |
[26] |
CHAN K C, JIANG P Y, ZHENG Y W, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing[J]. Clin Chem, 2013, 59(1): 211-224.
doi: 10.1373/clinchem.2012.196014 |
[27] | LEARY R J, SAUSEN M, KINDE I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing[J]. Sci Transl Med, 2012, 4(162): 162ra154. |
[28] |
LUCCI A, HALL C S, LODHI A K, et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study[J]. Lancet Oncol, 2012, 13(7): 688-695.
doi: 10.1016/S1470-2045(12)70209-7 |
[29] |
JANNI W J, RACK B, TERSTAPPEN L W, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer[J]. Clin Cancer Res, 2016, 22(10): 2583-2593.
doi: 10.1158/1078-0432.CCR-15-1603 |
[30] |
CHIMONIDOU M, STRATI A, TZITZIRA A, et al. DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells[J]. Clin Chem, 2011, 57(8): 1169-1177.
doi: 10.1373/clinchem.2011.165902 |
[31] |
BUDD G T, CRISTOFANILLI M, ELLIS M J, et al. Circulating tumor cells versus imaging: predicting overall survival in metastatic breast cancer[J]. Clin Cancer Res, 2006, 12(21): 6403-6409.
doi: 10.1158/1078-0432.CCR-05-1769 |
[32] | LI S Y, LAI H N, LIU J Q, et al. Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy[J]. JCO Precis Oncol, 2020(4): 244-257. |
[33] |
KIM M H, KIM G M, KIM S G, et al. Copy number aberration burden on circulating tumor DNA predicts recurrence risk after neoadjuvant chemotherapy in patients with triple-negative breast cancer: post-hoc analysis of phase Ⅲ PEARLY trial[J]. J Clin Oncol, 2022, 40(16_suppl): 603.
doi: 10.1200/JCO.2022.40.16_suppl.603 |
[34] |
RIVA F, BIDARD F C, HOUY A, et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer[J]. Clin Chem, 2017, 63(3): 691-699.
doi: 10.1373/clinchem.2016.262337 |
[35] |
MAGBANUA M J M, SWIGART L B, WU H T, et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival[J]. Ann Oncol, 2021, 32(2): 229-239.
doi: 10.1016/j.annonc.2020.11.007 |
[36] |
PAPAKONSTANTINOU A, GONZALEZ N S, PIMENTEL I, et al. Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: a systematic review and meta-analysis[J]. Cancer Treat Rev, 2022, 104: 102362.
doi: 10.1016/j.ctrv.2022.102362 |
[37] | GARCIA-MURILLAS I, SCHIAVON G, WEIGELT B, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer[J]. Sci Transl Med, 2015, 7(302): 302ra133. |
[38] |
OLSSON E, WINTER C, GEORGE A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease[J]. EMBO Mol Med, 2015, 7(8): 1034-1047.
doi: 10.15252/emmm.201404913 |
[39] |
CRISTOFANILLI M, BUDD G T, ELLIS M J, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer[J]. N Engl J Med, 2004, 351(8): 781-791.
doi: 10.1056/NEJMoa040766 |
[40] |
ROSSI G, MU Z M, RADEMAKER A W, et al. Cell-free DNA and circulating tumor cells: comprehensive liquid biopsy analysis in advanced breast cancer[J]. Clin Cancer Res, 2018, 24(3): 560-568.
doi: 10.1158/1078-0432.CCR-17-2092 |
[41] |
BIDARD F C, PEETERS D J, FEHM T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data[J]. Lancet Oncol, 2014, 15(4): 406-414.
doi: 10.1016/S1470-2045(14)70069-5 |
[42] |
HAYES D F, CRISTOFANILLI M, BUDD G T, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival[J]. Clin Cancer Res, 2006, 12(14 Pt 1): 4218-4224.
doi: 10.1158/1078-0432.CCR-05-2821 |
[43] |
STOVER D G, PARSONS H A, HA G, et al. Association of cell-free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer[J]. J Clin Oncol, 2018, 36(6): 543-553.
doi: 10.1200/JCO.2017.76.0033 |
[44] |
O'LEARY B, HREBIEN S, MORDEN J P, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer[J]. Nat Commun, 2018, 9(1): 896.
doi: 10.1038/s41467-018-03215-x |
[45] |
PAN H C, GRAY R, BRAYBROOKE J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years[J]. N Engl J Med, 2017, 377(19): 1836-1846.
doi: 10.1056/NEJMoa1701830 |
[46] |
SLAMON D, EIERMANN W, ROBERT N, et al. Adjuvant trastuzumab in HER2-positive breast cancer[J]. N Engl J Med, 2011, 365(14): 1273-1283.
doi: 10.1056/NEJMoa0910383 |
[47] |
PIETERS R, DE GROOT-KRUSEMAN H, VAN DER VELDEN V, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch childhood oncology group[J]. J Clin Oncol, 2016, 34(22): 2591-2601.
doi: 10.1200/JCO.2015.64.6364 |
[48] |
CHEN X Y, XIE H, WOOD B L, et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia[J]. J Clin Oncol, 2015, 33(11): 1258-1264.
doi: 10.1200/JCO.2014.58.3518 |
[49] |
VAN DALUM G, STAM G J, SCHOLTEN L F A, et al. Importance of circulating tumor cells in newly diagnosed colorectal cancer[J]. Int J Oncol, 2015, 46(3): 1361-1368.
doi: 10.3892/ijo.2015.2824 |
[50] |
KREBS M G, SLOANE R, PRIEST L, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small cell lung cancer[J]. J Clin Oncol, 2011, 29(12): 1556-1563.
doi: 10.1200/JCO.2010.28.7045 |
[51] |
NG S B, CHUA C, NG M, et al. Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery[J]. Sci Rep, 2017, 7: 40737.
doi: 10.1038/srep40737 |
[52] |
ABBOSH C, BIRKBAK N J, WILSON G A, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution[J]. Nature, 2017, 545(7655): 446-451.
doi: 10.1038/nature22364 |
[53] |
GUO N N, LOU F, MA Y F, et al. Circulating tumor DNA detection in lung cancer patients before and after surgery[J]. Sci Rep, 2016, 6: 33519.
doi: 10.1038/srep33519 |
[54] |
TRAPP E, JANNI W, SCHINDLBECK C, et al. Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis[J]. J Natl Cancer Inst, 2019, 111(4): 380-387.
doi: 10.1093/jnci/djy152 |
[55] |
SPARANO J, O'NEILL A, ALPAUGH K, et al. Association of circulating tumor cells with late recurrence of estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial[J]. JAMA Oncol, 2018, 4(12): 1700-1706.
doi: 10.1001/jamaoncol.2018.2574 |
[56] |
GARCIA-MURILLAS I, CHOPRA N, COMINO-MÉNDEZ I, et al. Assessment of molecular relapse detection in early-stage breast cancer[J]. JAMA Oncol, 2019, 5(10): 1473.
doi: 10.1001/jamaoncol.2019.1838 |
[57] |
LIPSYC-SHARF M, DE BRUIN E C, SANTOS K, et al. Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer[J]. J Clin Oncol, 2022, 40(22): 2408-2419.
doi: 10.1200/JCO.22.00908 |
[58] | SHAW J, PAGE K, AMBASGER B, et al. Serial postoperative ctDNA monitoring of breast cancer recurrence[J]. J Clin Oncol, 2022, 40(16_suppl): 562. |
[59] |
ZHOU Q, GAMPENRIEDER S P, FRANTAL S, et al. Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a significant predictor of poor tumor response[J]. Clin Cancer Res, 2022, 28(4): 697-707.
doi: 10.1158/1078-0432.CCR-21-3231 |
[60] | AVRAHAM A, UHLMANN R, SHPERBER A, et al. Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients[J]. Int J Cancer, 2012, 131(7): E1166-E1172. |
[61] |
IGNATIADIS M, LITIÈRE S, ROTHE F, et al. Trastuzumab versus observation for HER2 nonamplified early breast cancer with circulating tumor cells (EORTC 90091-10093, BIG 1-12, Treat CTC): a randomized phase Ⅱ trial[J]. Ann Oncol, 2018, 29(8): 1777-1783.
doi: 10.1093/annonc/mdy211 |
[62] |
GEORGOULIAS V, BOZIONELOU V, AGELAKI S, et al. Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19 mRNA-positive circulating tumor cells: results of a randomized phase Ⅱ study[J]. Ann Oncol, 2012, 23(7): 1744-1750.
doi: 10.1093/annonc/mds020 |
[63] |
LIU M C, SHIELDS P G, WARREN R D, et al. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer[J]. J Clin Oncol, 2009, 27(31): 5153-5159.
doi: 10.1200/JCO.2008.20.6664 |
[64] |
DAWSON S J, TSUI D W, MURTAZA M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer[J]. N Engl J Med, 2013, 368(13): 1199-1209.
doi: 10.1056/NEJMoa1213261 |
[65] |
PAOLETTI C, MUÑIZ M C, THOMAS D G, et al. Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor-positive breast cancer[J]. Clin Cancer Res, 2015, 21(11): 2487-2498.
doi: 10.1158/1078-0432.CCR-14-1913 |
[66] |
ALLOUCHERY V, BEAUSSIRE L, PERDRIX A, et al. Circulating ESR1 mutations at the end of aromatase inhibitor adjuvant treatment and after relapse in breast cancer patients[J]. Breast Cancer Res, 2018, 20(1): 40.
doi: 10.1186/s13058-018-0968-0 |
[67] | SCHIAVON G, HREBIEN S, GARCIA-MURILLAS I, et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer[J]. Sci Transl Med, 2015, 7(313): 313ra182. |
[68] |
CHANDARLAPATY S, CHEN D, HE W, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial[J]. JAMA Oncol, 2016, 2(10): 1310-1315.
doi: 10.1001/jamaoncol.2016.1279 |
[69] |
MASTORAKI S, STRATI A, TZANIKOU E, et al. ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up of patients with metastatic breast cancer receiving endocrine treatment[J]. Clin Cancer Res, 2018, 24(6): 1500-1510.
doi: 10.1158/1078-0432.CCR-17-1181 |
[70] |
FRIBBENS C, GARCIA MURILLAS I, BEANEY M, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer[J]. Ann Oncol, 2018, 29(1): 145-153.
doi: 10.1093/annonc/mdx483 |
[71] | ARPINO G, BIANCHINI G, MALORNI L, et al. Circulating tumor DNA (ctDNA) and serum thymidine kinase 1 activity (TKa) matched dynamics in patients (pts) with hormone receptor-positive (HR+), human epidermal growth factor 2-negative (HER2-) advanced breast cancer (ABC) treated in first-line (1L) with ribociclib (RIB) and letrozole (LET) in the BioItaLEE trial[J]. J Clin Oncol 2022, 40(16_suppl): 1012. |
[1] | 张景臣, 李新, 李江涛, 李海平, 陈艳丽, 牛冰, 祁川川, 叶贝贝. LINC02163靶向miR-338-3p影响乳腺癌细胞增殖、侵袭及迁移[J]. 中国癌症杂志, 2022, 32(9): 818-826. |
[2] | 中国抗癌协会乳腺癌专业委员会, 中国医师协会外科医师分会乳腺外科医师委员会, 上海市抗癌协会乳腺癌专业委员会. 乳腺肿瘤整形与乳房重建专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(9): 836-924. |
[3] | 肖玉铃, 朱秀之, 江一舟, 邵志敏. 三阴性乳腺癌精准治疗研究的新进展与未来展望[J]. 中国癌症杂志, 2022, 32(8): 669-679. |
[4] | 邱鹏飞, 王永胜. 前哨淋巴结时代乳腺癌的精准区域处理:演进与展望[J]. 中国癌症杂志, 2022, 32(8): 680-687. |
[5] | 周文斌, 谢晖, 丁强, 王水. 在乳腺癌局部精准治疗中的新进展:联合免疫治疗未来可期[J]. 中国癌症杂志, 2022, 32(8): 698-704. |
[6] | 刘燚铭, 范蕾, 莫淼, 邵志敏, 余科达. 卵巢功能抑制治疗雌激素受体阳性早期乳腺癌的短期效应和长期生存的影响因素分析[J]. 中国癌症杂志, 2022, 32(8): 705-711. |
[7] | 肖佳龙, 莫淼, 周昌明, 王泽洲, 沈洁, 袁晶, 余科达, 柳光宇, 吴炅, 沈镇宙, 邵志敏, 郑莹. 体重指数与年龄交互作用对乳腺癌患者预后影响的研究[J]. 中国癌症杂志, 2022, 32(8): 719-726. |
[8] | 陈安莉, 沈浩元, 阳仕雄, 邓春燕, 胡超华, 刘汉忠, 王舒, 钱芳. 血浆长链非编码RNA H19对乳腺癌新辅助治疗效果的预测价值[J]. 中国癌症杂志, 2022, 32(8): 727-735. |
[9] | 洪雅萍, 黄韵坚, 黄漳州, 陈胜佳, 钟巧凤, 曾洪福, 庄武. EGFR突变的晚期非小细胞肺癌患者接受一代TKI靶向治疗的效果及预后预测因子分析[J]. 中国癌症杂志, 2022, 32(7): 624-634. |
[10] | 刘强, 方仪, 王靖. 单细胞测序技术在乳腺癌研究中的应用进展[J]. 中国癌症杂志, 2022, 32(7): 635-642. |
[11] | 钱瑶(综述), 刘锋(审校). 乳腺癌新辅助内分泌治疗的研究进展及展望[J]. 中国癌症杂志, 2022, 32(7): 643-649. |
[12] | 贾晓青, 孙晓寅, 蒋蓓琦, 梅章懿, 傅韵, 莊志刚. 类泛素化neddylation修饰调控乳腺癌中核纤层蛋白lamin B1的表达[J]. 中国癌症杂志, 2022, 32(6): 535-541. |
[13] | 刘建兰, 陈黛诗, 胡泓, 周冬仙, 胡锦涛. HER2阳性浸润性乳腺癌新辅助治疗反应的预测因子及治疗前后HER2状态变化的评估[J]. 中国癌症杂志, 2022, 32(5): 417-426. |
[14] | 章倩, 方晓燕, 刘娟, 刘进, 程蕾蕾, 孙菁. 早期左侧乳腺癌保乳术后大分割放疗同期瘤床加量的安全性及心脏亚结构剂量评估的重要性研究[J]. 中国癌症杂志, 2022, 32(5): 427-435. |
[15] | 许炳琦, 张国强. 乳腺癌新辅助治疗二次活检诊断病理学应答研究进展及临床意义[J]. 中国癌症杂志, 2022, 32(4): 335-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn