中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (8): 698-704.doi: 10.19401/j.cnki.1007-3639.2022.08.004
收稿日期:
2022-06-12
修回日期:
2022-07-09
出版日期:
2022-08-30
发布日期:
2022-09-19
通信作者:
王水
E-mail:zhouwenbin@njmu.edu.cn;shwang@njmu.edu.cn
作者简介:
周文斌(ORCID: 0000-0003-1220-6797),副主任医师,E-mail: zhouwenbin@njmu.edu.cn。ZHOU Wenbin()(), XIE Hui, DING Qiang, WANG Shui()()
Received:
2022-06-12
Revised:
2022-07-09
Published:
2022-08-30
Online:
2022-09-19
Contact:
WANG Shui
E-mail:zhouwenbin@njmu.edu.cn;shwang@njmu.edu.cn
文章分享
摘要:
乳腺癌是女性最常见的恶性肿瘤,早期乳腺癌治疗以手术为主。目前,早期乳腺癌的诊治已取得了显著进展,但仍需要创新的方法来减少创伤和改善预后。随着乳腺癌治疗手段创新性研究的深入,乳房和腋窝的非手术治疗成为早期乳腺癌治疗的研究热点。微波消融作为一种微创的精准局部治疗方式,具有消融迅速、操作方式简易、术后并发症较少等特点,目前已尝试用于治疗早期乳腺癌,获得了较好的临床效果。此外,有研究报道,早期乳腺癌经微波消融可调节肿瘤免疫微环境,激发体内抗原特异性的抗肿瘤免疫反应。该免疫效应可能与微波消融后肿瘤抗原的大量释放有关。乳腺癌单用免疫治疗效果差,有研究者提出通过联合免疫治疗增强消融免疫效应的方案,但其具体疗效仍需要更多的临床数据支持。随着对于微波消融引起体内免疫效应的研究深入,微波治疗联合免疫检查点抑制剂疗法有望成为全新的精准治疗策略和理念。本文对微波消融在乳腺癌局部精准治疗中的应用研究新进展及未来发展方向进行总结。
中图分类号:
周文斌, 谢晖, 丁强, 王水. 在乳腺癌局部精准治疗中的新进展:联合免疫治疗未来可期[J]. 中国癌症杂志, 2022, 32(8): 698-704.
ZHOU Wenbin, XIE Hui, DING Qiang, WANG Shui. New research progress of microwave ablation in the local precise treatment of early-stage breast cancer: the prospect of combined immunotherapy is promising[J]. China Oncology, 2022, 32(8): 698-704.
[1] |
YU M X, PAN H, CHE N, et al. Microwave ablation of primary breast cancer inhibits metastatic progression in model mice via activation of natural killer cells[J]. Cell Mol Immunol, 2021, 18(9): 2153-2164.
doi: 10.1038/s41423-020-0449-0 |
[2] |
PHD H S, JACQUES FERLAY MSC M, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[3] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
doi: 10.3322/caac.21708 |
[4] |
FORNAGE B D, HUNT K K. Image-guided percutaneous ablation of small breast cancer: which technique is leading the pack?[J]. Technol Cancer Res Treat, 2015, 14(2): 209-211.
doi: 10.7785/tcrt.2012.500395 |
[5] |
CHU K F, DUPUY D E. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
doi: 10.1038/nrc3672 |
[6] |
PETROWSKY H, FRITSCH R, GUCKENBERGER M, et al. Modern therapeutic approaches for the treatment of malignant liver tumours[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(12): 755-772.
doi: 10.1038/s41575-020-0314-8 |
[7] |
AHMED M, BRACE C L, LEE F T, et al. Principles of and advances in percutaneous ablation[J]. Radiology, 2011, 258(2): 351-369.
doi: 10.1148/radiol.10081634 |
[8] |
SIMMONS R M, BALLMAN K V, COX C, et al. A phase Ⅱ trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (alliance) Z1072[J]. Ann Surg Oncol, 2016, 23(8): 2438-2445.
doi: 10.1245/s10434-016-5275-3 |
[9] |
CAZZATO R L, DE LARA C T, BUY X, et al. Single-centre experience with percutaneous cryoablation of breast cancer in 23 consecutive non-surgical patients[J]. Cardiovasc Intervent Radiol, 2015, 38(5): 1237-1243.
doi: 10.1007/s00270-015-1181-5 |
[10] |
PALUSSIÈRE J, HENRIQUES C, MAURIAC L, et al. Radiofrequency ablation as a substitute for surgery in elderly patients with nonresected breast cancer: pilot study with long-term outcomes[J]. Radiology, 2012, 264(2): 597-605.
doi: 10.1148/radiol.12111303 |
[11] |
FINE R E, GILMORE R C, DIETZ J R, et al. Cryoablation without excision for low-risk early-stage breast cancer: 3-year interim analysis of ipsilateral breast tumor recurrence in the ICE3 trial[J]. Ann Surg Oncol, 2021, 28(10): 5525-5534.
doi: 10.1245/s10434-021-10501-4 |
[12] |
SIMON C J, DUPUY D E, MAYO-SMITH W W. Microwave ablation: principles and applications[J]. Radiographics, 2005, 25(Suppl 1): S69-S83.
doi: 10.1148/rg.25si055501 |
[13] |
ZHOU W B, ZHA X M, LIU X A, et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study[J]. Radiology, 2012, 263(2): 364-373.
doi: 10.1148/radiol.12111901 |
[14] |
ZHOU W B, LIANG M D, PAN H, et al. Comparison of ablation zones among different tissues using 2 450 MHz cooled-shaft microwave antenna: results in ex vivo porcine models[J]. PLoS One, 2013, 8(8): e71873.
doi: 10.1371/journal.pone.0071873 |
[15] |
ZHOU W B, JIANG Y N, CHEN L, et al. Image and pathological changes after microwave ablation of breast cancer: a pilot study[J]. Eur J Radiol, 2014, 83(10): 1771-1777.
doi: 10.1016/j.ejrad.2014.06.015 |
[16] |
ZHOU W B, DING Q, LIU X A, et al. Percutaneous microwave coagulation for eradication of VX2 tumors subcutaneously in rabbits[J]. World J Surg Oncol, 2012, 10: 97.
doi: 10.1186/1477-7819-10-97 |
[17] |
KONG P, CHEN L, SHI X, et al. Microwave ablation combined with doxorubicin enhances cell death via promoting reactive oxygen species generation in breast cancer cells[J]. Diagn Interv Imaging, 2018, 99(12): 783-791.
doi: 10.1016/j.diii.2018.06.004 |
[18] |
KONG P, PAN H, YU M, et al. Insufficient microwave ablation-induced promotion of distant metastasis is suppressed by β-catenin pathway inhibition in breast cancer[J]. Oncotarget, 2017, 8(70): 115089-115101.
doi: 10.18632/oncotarget.22859 |
[19] |
SHI X, PAN H, GE H, et al. Subsequent cooling-circulation after radiofrequency and microwave ablation avoids secondary indirect damage induced by residual thermal energy[J]. Diagn Interv Radiol, 2019, 25(4): 291-297.
doi: 10.5152/dir.2019.17455 |
[20] |
ZHOU W B, YU M X, PAN H, et al. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer[J]. J Immunother Cancer, 2021, 9(4): e002343.
doi: 10.1136/jitc-2021-002343 |
[21] |
TOLBA M F, OMAR H A. Immunotherapy, an evolving approach for the management of triple negative breast cancer: converting non-responders to responders[J]. Crit Rev Oncol Hematol, 2018, 122: 202-207.
doi: 10.1016/j.critrevonc.2018.01.005 |
[22] |
EMENS L A. Breast cancer immunotherapy: facts and hopes[J]. Clin Cancer Res, 2018, 24(3): 511-520.
doi: 10.1158/1078-0432.CCR-16-3001 |
[23] |
ROBERT C, RIBAS A, SCHACHTER J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study[J]. Lancet Oncol, 2019, 20(9): 1239-1251.
doi: 10.1016/S1470-2045(19)30388-2 |
[24] |
ROBERT C, THOMAS L, BONDARENKO I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma[J]. N Engl J Med, 2011, 364(26): 2517-2526.
doi: 10.1056/NEJMoa1104621 |
[25] |
SCHMID P, RUGO H S, ADAMS S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(1): 44-59.
doi: 10.1016/S1470-2045(19)30689-8 |
[26] |
EMENS L A, CRUZ C, EDER J P, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase Ⅰ study[J]. JAMA Oncol, 2019, 5(1): 74-82.
doi: 10.1001/jamaoncol.2018.4224 |
[27] |
SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230): 69-74.
doi: 10.1126/science.aaa4971 |
[28] |
MCARTHUR H L, DIAB A, PAGE D B, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling[J]. Clin Cancer Res, 2016, 22(23): 5729-5737.
doi: 10.1158/1078-0432.CCR-16-0190 |
[29] |
HO A Y, BARKER C A, ARNOLD B B, et al. A phase 2 clinical trial assessing the efficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer[J]. Cancer, 2020, 126(4): 850-860.
doi: 10.1002/cncr.32599 |
[30] |
VOORWERK L, SLAGTER M, HORLINGS H M, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial[J]. Nat Med, 2019, 25(6): 920-928.
doi: 10.1038/s41591-019-0432-4 |
[31] |
DEMARIA S, GOLDEN E B, FORMENTI S C. Role of local radiation therapy in cancer immunotherapy[J]. JAMA Oncol, 2015, 1(9): 1325-1332.
doi: 10.1001/jamaoncol.2015.2756 |
[32] |
BADWE R, HAWALDAR R, NAIR N, et al. Locoregional treatment versus no treatment of the primary tumour in metastatic breast cancer: an open-label randomised controlled trial[J]. Lancet Oncol, 2015, 16(13): 1380-1388.
doi: 10.1016/S1470-2045(15)00135-7 |
[33] |
ZHAO J, WEN X F, TIAN L, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer[J]. Nat Commun, 2019, 10(1): 899.
doi: 10.1038/s41467-019-08782-1 |
[34] |
DEN BROK M H M G M, SUTMULLER R P M, VAN DER VOORT R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity[J]. Cancer Res, 2004, 64(11): 4024-4029.
doi: 10.1158/0008-5472.CAN-03-3949 |
[35] |
FORMENTI S C, DEMARIA S. Systemic effects of local radiotherapy[J]. Lancet Oncol, 2009, 10(7): 718-726.
doi: 10.1016/S1470-2045(09)70082-8 |
[36] |
SÁNCHEZ-ORTIZ R F, TANNIR N, AHRAR K, et al. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: an in situ tumor vaccine?[J]. J Urol, 2003, 170(1): 178-179.
doi: 10.1097/01.ju.0000070823.38336.7b |
[37] |
KIM H, PARK B K, KIM C K. Spontaneous regression of pulmonary and adrenal metastases following percutaneous radiofrequency ablation of a recurrent renal cell carcinoma[J]. Korean J Radiol, 2008, 9(5): 470-472.
doi: 10.3348/kjr.2008.9.5.470 |
[38] |
SOANES W A, ABLIN R J, GONDER M J. Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations[J]. J Urol, 1970, 104(1): 154-159.
doi: 10.1016/S0022-5347(17)61690-2 |
[39] |
MCGAHAN J P, BROCK J M, TESLUK H, et al. Hepatic ablation with use of radio-frequency electrocautery in the animal model[J]. J Vasc Interv Radiol, 1992, 3(2): 291-297.
doi: 10.1016/S1051-0443(92)72028-4 |
[40] |
LI L, WANG W, PAN H, et al. Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer[J]. J Transl Med, 2017, 15(1): 23.
doi: 10.1186/s12967-017-1124-9 |
[41] |
ZHU J, YU M, CHEN L, et al. Enhanced antitumor efficacy through microwave ablation in combination with immune checkpoints blockade in breast cancer: a pre-clinical study in a murine model[J]. Diagn Interv Imaging, 2018, 99(3): 135-142.
doi: 10.1016/j.diii.2017.12.011 |
[42] | ZHOU W B, YU M X, MAO X R, et al. Landscape of the peripheral immune response induced by local microwave ablation in patients with breast cancer[J]. Adv Sci (Weinh), 2022, 9(17): e2200033. |
[43] |
HAEN S P, GOUTTEFANGEAS C, SCHMIDT D, et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation[J]. Cell Stress Chaperones, 2011, 16(5): 495-504.
doi: 10.1007/s12192-011-0261-y |
[44] |
GU T, GE Y, SONG Y Z, et al. Hepatic radiofrequency ablation causes an increase of circulating histones in patients with hepatocellular carcinoma[J]. Scand J Clin Lab Invest, 2015, 75(7): 621-627.
doi: 10.3109/00365513.2015.1050689 |
[45] | LI G F, STAVELEY-O’CARROLL K F, KIMCHI E T. Potential of radiofrequency ablation in combination with immunotherapy in the treatment of hepatocellular carcinoma[J]. J Clin Trials, 2016, 6(2): 257. |
[1] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[2] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[3] | 张剑. 关于女性乳腺癌患者绝经状态判断两个关键问题的临床思考[J]. 中国癌症杂志, 2024, 34(7): 619-627. |
[4] | 姜丹, 宋国庆, 王晓丹. 乳腺癌中线粒体功能障碍与CPT1A/ERK信号转导通路共同调节乳腺癌恶性行为的机制研究[J]. 中国癌症杂志, 2024, 34(7): 650-658. |
[5] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[6] | 廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远. 局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析[J]. 中国癌症杂志, 2024, 34(7): 669-679. |
[7] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[8] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
[9] | 董涧桥, 李坤艳, 李菁, 王斌, 王艳红, 贾红燕. SIRT3通过去乙酰化YME1L1诱导乳腺癌内分泌治疗耐药的作用机制研究[J]. 中国癌症杂志, 2024, 34(6): 537-547. |
[10] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
[11] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[12] | 辛美仪, 林玉红, 赵凯. 肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(5): 509-516. |
[13] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[14] | 薛驰, 高鹏, 朱志, 王振宁. 免疫治疗在胃癌的围手术期及转化治疗中的应用和挑战[J]. 中国癌症杂志, 2024, 34(3): 259-267. |
[15] | 陈亦凡, 李婷, 王碧芸. CCR8在肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(3): 299-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn