中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (1): 1-13.doi: 10.19401/j.cnki.1007-3639.2023.01.001
收稿日期:
2022-12-30
修回日期:
2023-01-13
出版日期:
2023-01-30
发布日期:
2023-02-13
通信作者:
虞先濬(ORCID: 0000-0002-6697-7143),博士,教授、主任医师,复旦大学附属肿瘤医院副院长。
作者简介:
王旭(ORCID: 0000-0001-6920-0375),博士,副研究员。基金资助:
WANG Xu(), CHENG He, LIU Chen, YU Xianjun(
)
Received:
2022-12-30
Revised:
2023-01-13
Published:
2023-01-30
Online:
2023-02-13
Contact:
YU Xianjun
文章分享
摘要:
胰腺癌是中国致死人数排名第六的恶性肿瘤,其恶性程度高,早期病情隐匿,超过80%的患者在就诊时已进展为晚期,错失手术切除治愈的机会;而成功接受了手术治疗的胰腺癌患者,也极易发生转移,5年生存率仅为15% ~ 20%。不同于其他癌种,胰腺癌的放化疗及免疫治疗效率均较低,分子分型和精准治疗技术的研究也相对落后,急需临床医疗资源的投入和优质科研成果的转化,以改善患者预后。2022年是胰腺癌转化研究领域厚积薄发的一年,见证了第1个靶向KRASG12D的小分子药物的诞生和个性化T细胞受体工程化T(T-cell receptor engineered T,TCR-T)细胞治疗技术的临床应用,在胰腺癌发病因素、分子机制、代谢、免疫微环境等基础领域,以及早期诊断、手术治疗、药物治疗、免疫治疗等临床领域也各自取得了新突破。本文对2022年胰腺癌研究和诊疗领域的最新进展进行综述。
中图分类号:
王旭, 程合, 刘辰, 虞先濬. 2022年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(1): 1-13.
WANG Xu, CHENG He, LIU Chen, YU Xianjun. New progress in basic research, clinical diagnosis and treatment of pancreatic cancer in 2022[J]. China Oncology, 2023, 33(1): 1-13.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] | WILD C P, WEIDERPASS E, STEWART B W. World cancer report: cancer research for cancer prevention[M]. Lyon: IARC Publications, 2020. |
[3] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022. 72(1): 7-33.
doi: 10.3322/caac.21708 |
[4] | XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. |
[5] |
IRFAN A, FANG H A, AWAD S, et al. Does race affect the long-term survival benefit of systemic therapy in pancreatic adenocarcinoma?[J]. Am J Surg, 2022, 224(3): 955-958.
doi: 10.1016/j.amjsurg.2022.04.004 pmid: 35430088 |
[6] |
ARJANI S, SAINT-MAURICE P F, JULIÁN-SERRANO S, et al. Body mass index trajectories across the adult life course and pancreatic cancer risk[J]. JNCI Cancer Spectr, 2022, 6(6): pkac066.
doi: 10.1093/jncics/pkac066 |
[7] |
SHARMA S, TAPPER W J, COLLINS A, et al. Predicting pancreatic cancer in the UK biobank cohort using polygenic risk scores and diabetes mellitus[J]. Gastroenterology, 2022, 162(6): 1665-1674.e2.
doi: 10.1053/j.gastro.2022.01.016 |
[8] |
WANG L, SCOTT F I, BOURSI B, et al. Cost-effectiveness of a risk-tailored pancreatic cancer early detection strategy among patients with new-onset diabetes[J]. Clin Gastroenterol Hepatol, 2022, 20(9): 1997-2004.e7.
doi: 10.1016/j.cgh.2021.10.037 |
[9] |
JULIÁN-SERRANO S, REEDY J, ROBIEN K, et al. Adherence to 5 diet quality indices and pancreatic cancer risk in a large US prospective cohort[J]. Am J Epidemiol, 2022, 191(9): 1584-1600.
doi: 10.1093/aje/kwac082 |
[10] |
MUNIGALA S, SUBRAMANIAM D S, SUBRAMANIAM D P, et al. Incidence and risk of pancreatic cancer in patients with a new diagnosis of chronic pancreatitis[J]. Dig Dis Sci, 2022, 67(2): 708-715.
doi: 10.1007/s10620-021-06886-7 |
[11] | MUNIGALA S, ALMASKEEN S, SUBRAMANIAM D S, et al. Acute pancreatitis recurrences augment long-term pancreatic cancer risk[J]. Am J Gastroenterol, 2022. [Online ahead of print] |
[12] |
MAHAJAN U M, OEHRLE B, SIRTL S, et al. Independent validation and assay standardization of improved metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis[J]. Gastroenterology, 2022, 163(5): 1407-1422.
doi: 10.1053/j.gastro.2022.07.047 pmid: 35870514 |
[13] |
CHEN W S, CHEN Q L, PARKER R A, et al. Risk prediction of pancreatic cancer in patients with abnormal morphologic findings related to chronic pancreatitis: a machine learning approach[J]. Gastro Hep Adv, 2022, 1(6): 1014-1026.
doi: 10.1016/j.gastha.2022.06.008 |
[14] |
POLLINI T, ADSAY V, CAPURSO G, et al. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms[J]. Lancet Gastroenterol Hepatol, 2022, 7(12): 1141-1150.
doi: 10.1016/S2468-1253(22)00235-7 |
[15] |
HERNANDEZ S, PARRA E R, URAOKA N, et al. Diminished immune surveillance during histologic progression of intraductal papillary mucinous neoplasms offers a therapeutic opportunity for cancer interception[J]. Clin Cancer Res, 28(9): 1938-1947.
doi: 10.1158/1078-0432.CCR-21-2585 |
[16] | LIFFERS S T, GODFREY L, FROHN L, et al. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype[J]. Gut, 2022: gutjnl-gu2021-326550. |
[17] |
FELIX K, HONDA K, NAGASHIMA K, et al. Noninvasive risk stratification of intraductal papillary mucinous neoplasia with malignant potential by serum apolipoprotein-A2-isoforms[J]. Int J Cancer, 2022, 150(5): 881-894.
doi: 10.1002/ijc.33875 |
[18] |
YAMAGUCHI A, TAZUMA S, TAMARU Y, et al. Long-standing diabetes mellitus increases concomitant pancreatic cancer risk in patients with intraductal papillary mucinous neoplasms[J]. BMC Gastroenterol, 2022, 22(1): 529.
doi: 10.1186/s12876-022-02564-8 pmid: 36539713 |
[19] |
PEDUZZI G, ARCHIBUGI L, KATZKE V, et al. Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women[J]. Sci Rep, 2022, 12(1): 18100.
doi: 10.1038/s41598-022-22973-9 pmid: 36302831 |
[20] |
CAO L W, HUANG C, CUI ZHOU D, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma[J]. Cell, 2021, 184(19): 5031-5052.e26.
doi: 10.1016/j.cell.2021.08.023 pmid: 34534465 |
[21] |
LEIDNER R, SANJUAN SILVA N, HUANG H Y, et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer[J]. N Engl J Med, 2022, 386(22): 2112-2119.
doi: 10.1056/NEJMoa2119662 |
[22] |
ASTIAZARAN-SYMONDS E, KIM J, HALEY J S, et al. A genome-first approach to estimate prevalence of germline pathogenic variants and risk of pancreatic cancer in select cancer susceptibility genes[J]. Cancers, 2022, 14(13): 3257.
doi: 10.3390/cancers14133257 |
[23] |
GARDINER A, KIDD J, ELIAS M C, et al. Pancreatic ductal carcinoma risk associated with hereditary cancer-risk genes[J]. J Natl Cancer Inst, 2022, 114(7): 996-1002.
doi: 10.1093/jnci/djac069 |
[24] | GIACCHERINI M, FARINELLA R, GENTILUOMO M, et al. Association between a polymorphic variant in the CDKN2B-AS1/ANRIL gene and pancreatic cancer risk[J]. Int J Cancer, 2022. [Online ahead of print] |
[25] | SARDARZADEH N, KHOJASTEH-LEYLAKOOHI F, DAMAVANDI S, et al. Association of a genetic variant in the cyclin-dependent kinase inhibitor 2B with risk of pancreatic cancer[J]. Rep Biochem Mol Biol, 2022, 11(2): 336-343. |
[26] |
GIACCHERINI M, GENTILUOMO M, ARCIDIACONO P G, et al. A polymorphic variant in telomere maintenance is associated with worrisome features and high-risk stigmata development in IPMNs[J]. Carcinogenesis, 2022, 43(8): 728-735.
doi: 10.1093/carcin/bgac051 pmid: 35675759 |
[27] |
RAMAKRISHNAN G, PARAJULI P, SINGH P, et al. NF1 loss of function as an alternative initiating event in pancreatic ductal adenocarcinoma[J]. Cell Rep, 2022, 41(6): 111623.
doi: 10.1016/j.celrep.2022.111623 |
[28] |
TIAN J B, CHEN C, RAO M L, et al. Aberrant RNA splicing is a primary link between genetic variation and pancreatic cancer risk[J]. Cancer Res, 2022, 82(11): 2084-2096.
doi: 10.1158/0008-5472.CAN-21-4367 pmid: 35363263 |
[29] |
OZTURK H, CINGOZ H, TUFAN T R, et al. ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer[J]. Dev Cell, 2022, 57(11): 1331-1346.e9.
doi: 10.1016/j.devcel.2022.04.014 pmid: 35508175 |
[30] |
HUANG H, PAN R N, ZHAO Y, et al. L3MBTL2-mediated CGA transcriptional suppression promotes pancreatic cancer progression through modulating autophagy[J]. iScience, 2022, 25(5): 104249.
doi: 10.1016/j.isci.2022.104249 |
[31] | NI Q Z, ZHU B, JI Y, et al. PPDPF promotes the development of mutant KRAS-driven pancreatic ductal adenocarcinoma by regulating the GEF activity of SOS1[J]. Adv Sci (Weinh), 2022: e2202448. |
[32] | DE ANDRÉS M P, JACKSON R J, FELIPE I, et al. GATA4 and GATA6 loss-of-expression is associated with extinction of the classical programme and poor outcome in pancreatic ductal adenocarcinoma[J]. Gut, 2022: gutjnl-gu2021-325803. |
[33] |
HE D, FENG H J, SUNDBERG B, et al. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis[J]. Mol Cell, 2022, 82(16): 3045-3060.e11.
doi: 10.1016/j.molcel.2022.06.005 pmid: 35752173 |
[34] | DOFFO J, BAMOPOULOS S A, KÖSE H, et al. NOXA expression drives synthetic lethality to RUNX1 inhibition in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2022, 119(9): e2105691119. |
[35] | CHENG R J, LI F Y, ZHANG M L, et al. A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers[J]. Cell Res, 2022. [Online ahead of print] |
[36] |
MARUI S, NISHIKAWA Y, SHIOKAWA M, et al. Context-dependent roles of Hes1 in the adult pancreas and pancreatic tumor formation[J]. Gastroenterology, 2022, 163(6): 1613-1629.e12.
doi: 10.1053/j.gastro.2022.08.048 |
[37] |
FAN X Y, LU P, WANG H W, et al. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma[J]. Cell Discov, 2022, 8(1): 13.
doi: 10.1038/s41421-021-00366-y pmid: 35165277 |
[38] |
SHI X H, LI Y G, YUAN Q Y, et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity[J]. Nat Commun, 2022, 13(1): 2169.
doi: 10.1038/s41467-022-29857-6 pmid: 35449156 |
[39] |
ZHU Q, ZHOU H, WU L M, et al. O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1[J]. Nat Chem Biol, 2022, 18(10): 1087-1095.
doi: 10.1038/s41589-022-01085-5 pmid: 35879546 |
[40] |
LIU Y, DEGUCHI Y, WEI D Y, et al. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ[J]. Nat Commun, 2022, 13(1): 2665.
doi: 10.1038/s41467-022-30392-7 |
[41] |
KONG W J, LIU Z S, SUN M N, et al. Synergistic autophagy blockade and VDR signaling activation enhance stellate cell reprogramming in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2022, 539: 215718.
doi: 10.1016/j.canlet.2022.215718 |
[42] |
GRECO B, MALACARNE V, DE GIRARDI F, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies[J]. Sci Transl Med, 2022, 14(628): eabg3072.
doi: 10.1126/scitranslmed.abg3072 |
[43] | WANG Z K, MORESCO P, YAN R, et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack[J]. Proc Natl Acad Sci USA, 2022, 119(4): e2119463119. |
[44] |
MI H Y, SIVAGNANAM S, BETTS C B, et al. Quantitative spatial profiling of immune populations in pancreatic ductal adenocarcinoma reveals tumor microenvironment heterogeneity and prognostic biomarkers[J]. Cancer Res, 2022, 82(23): 4359-4372.
doi: 10.1158/0008-5472.CAN-22-1190 |
[45] |
ZHOU D C, JAYASINGHE R G, CHEN S Q, et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer[J]. Nat Genet, 2022, 54(9): 1390-1405.
doi: 10.1038/s41588-022-01157-1 pmid: 35995947 |
[46] |
HUANG H C, WANG Z N, ZHANG Y Q, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer[J]. Cancer Cell, 2022, 40(6): 656-673.e7.
doi: 10.1016/j.ccell.2022.04.011 |
[47] |
KARTAL E, SCHMIDT T S B, MOLINA-MONTES E, et al. A faecal microbiota signature with high specificity for pancreatic cancer[J]. Gut, 2022, 71(7): 1359-1372.
doi: 10.1136/gutjnl-2021-324755 pmid: 35260444 |
[48] |
NAGATA N, NISHIJIMA S, KOJIMA Y, et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study[J]. Gastroenterology, 2022, 163(1): 222-238.
doi: 10.1053/j.gastro.2022.03.054 pmid: 35398347 |
[49] |
GHADDAR B, BISWAS A, HARRIS C, et al. Tumor microbiome links cellular programs and immunity in pancreatic cancer[J]. Cancer Cell, 2022, 40(10): 1240-1253.e5.
doi: 10.1016/j.ccell.2022.09.009 pmid: 36220074 |
[50] |
SU H, YANG F, FU R, et al. Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome[J]. Nature, 2022, 610(7931): 366-372.
doi: 10.1038/s41586-022-05169-z |
[51] |
HALBROOK C J, THURSTON G, BOYER S, et al. Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells[J]. Nat Cancer, 2022, 3(11): 1386-1403.
doi: 10.1038/s43018-022-00463-1 |
[52] | GUBBALA V B, JYTOSANA N, TRINH V Q, et al. Eicosanoids in the pancreatic tumor microenvironment-a multicellular, multifaceted progression[J]. Gastro Hep Adv, 2022, 1(4): 682-697. |
[53] |
KIM P K, HALBROOK C J, KERK S A, et al. Hyaluronic acid fuels pancreatic cancer cell growth[J]. Elife, 2021, 10: e62645.
doi: 10.7554/eLife.62645 |
[54] | BAI J R, LIU T, TU B, et al. Autophagy loss impedes cancer-associated fibroblast activation via downregulating proline biosynthesis[J]. Autophagy, 2022: 1-12. |
[55] |
FALCOMATÀ C, BÄRTHEL S, WIDHOLZ S A, et al. Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment[J]. Nat Cancer, 2022, 3(3): 318-336.
doi: 10.1038/s43018-021-00326-1 |
[56] |
GU J Y, HUANG W J, WANG X X, et al. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemCitabine resistance in pancreatic cancer[J]. Mol Cancer, 2022, 21(1): 112.
doi: 10.1186/s12943-022-01587-9 pmid: 35538494 |
[57] |
LIU J J, JING W H, WANG T Y, et al. Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer[J]. Pharmacol Res, 2022, 187: 106554.
doi: 10.1016/j.phrs.2022.106554 |
[58] |
ZENG X Y, ZHAO F, CUI G F, et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma[J]. Nat Cancer, 2022, 3(9): 1088-1104.
doi: 10.1038/s43018-022-00429-3 |
[59] |
VAZIRI-GOHAR A, CASSEL J, MOHAMMED F S, et al. Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors[J]. Nat Cancer, 2022, 3(7): 852-865.
doi: 10.1038/s43018-022-00393-y |
[60] |
WANG P Y, ZHANG T, WANG X J, et al. Aberrant human ClpP activation disturbs mitochondrial proteome homeostasis to suppress pancreatic ductal adenocarcinoma[J]. Cell Chem Biol, 2022, 29(9): 1396-1408.e8.
doi: 10.1016/j.chembiol.2022.07.002 |
[61] |
LI J H, LAMA R, GALSTER S L, et al. Small-molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53[J]. Mol Cancer Ther, 2022, 21(4): 535-545.
doi: 10.1158/1535-7163.MCT-21-0728 |
[62] |
WENG N N, QIN S Y, LIU J Y, et al. Repurposing econazole as a pharmacological autophagy inhibitor to treat pancreatic ductal adenocarcinoma[J]. Acta Pharm Sin B, 2022, 12(7): 3085-3102.
doi: 10.1016/j.apsb.2022.01.018 pmid: 35865101 |
[63] |
DA SILVA L, JIANG J M, PERKINS C, et al. Pharmacological inhibition and reversal of pancreatic acinar ductal metaplasia[J]. Cell Death Discov, 2022, 8(1): 378.
doi: 10.1038/s41420-022-01165-4 pmid: 36055991 |
[64] |
LAN L X, EVAN T, LI H F, et al. GREM1 is required to maintain cellular heterogeneity in pancreatic cancer[J]. Nature, 2022, 607(7917): 163-168.
doi: 10.1038/s41586-022-04888-7 |
[65] |
YUAN F, SUN M N, LIU Z S, et al. Macropinocytic dextran facilitates KRAS-targeted delivery while reducing drug-induced tumor immunity depletion in pancreatic cancer[J]. Theranostics, 2022, 12(3): 1061-1073.
doi: 10.7150/thno.65299 pmid: 35154474 |
[66] | CHEN Q J, WANG Q B, WANG Y, et al. Penetrating micelle for reversing immunosuppression and drug resistance in pancreatic cancer treatment[J]. Small, 2022, 18(18): e2107712. |
[67] |
TIBILETTI M G, CARNEVALI I, PENSOTTI V, et al. OncoPan®: an NGS-based screening methodology to identify molecular markers for therapy and risk assessment in pancreatic ductal adenocarcinoma[J]. Biomedicines, 2022, 10(5): 1208.
doi: 10.3390/biomedicines10051208 |
[68] |
KHAN S, LUCK H, WINER S, et al. Emerging concepts in intestinal immune control of obesity-related metabolic disease[J]. Nat Commun, 2021, 12(1): 2598.
doi: 10.1038/s41467-021-22727-7 pmid: 33972511 |
[69] |
PREVENTIVE SERVICES TASK FORCE U S, OWENS D K, DAVIDSON K W, et al. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement[J]. JAMA, 2019, 322(5): 438-444.
doi: 10.1001/jama.2019.10232 pmid: 31386141 |
[70] |
GOGGINS M, OVERBEEK K A, BRAND R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium[J]. Gut, 2020, 69(1): 7-17.
doi: 10.1136/gutjnl-2019-319352 pmid: 31672839 |
[71] |
HUANG C C, SIMEONE D M, LUK L, et al. Standardization of MRI screening and reporting in individuals with elevated risk of pancreatic ductal adenocarcinoma: consensus statement of the PRECEDE consortium[J]. AJR Am J Roentgenol, 2022, 219(6): 903-914.
doi: 10.2214/AJR.22.27859 |
[72] |
OVERBEEK K A, LEVINK I J M, KOOPMANN B D M, et al. Long-term yield of pancreatic cancer surveillance in high-risk individuals[J]. Gut, 2022, 71(6): 1152-1160.
doi: 10.1136/gutjnl-2020-323611 |
[73] |
QURESHI T A, JAVED S, SARMADI T, et al. Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review[J]. Chin Clin Oncol, 2022, 11(1): 1.
doi: 10.21037/cco-21-117 pmid: 35144387 |
[74] |
JAVED S, QURESHI T A, GADDAM S, et al. Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images[J]. Front Oncol, 2022, 12: 1007990.
doi: 10.3389/fonc.2022.1007990 |
[75] |
AHMAD QURESHI T, GADDAM S, WACHSMAN A M, et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images[J]. Cancer Biomark, 2022, 33(2): 211-217.
doi: 10.3233/CBM-210273 pmid: 35213359 |
[76] |
LEVINK I J M, KLATTE D C F, HANNA-SAWIRES R G, et al. Longitudinal changes of serum protein N-glycan levels for earlier detection of pancreatic cancer in high-risk individuals[J]. Pancreatology, 2022, 22(4): 497-506.
doi: 10.1016/j.pan.2022.03.021 |
[77] |
DA PAIXÃO V F, SOSA O J, DA SILVA PELLEGRINA D V, et al. Annotation and functional characterization of long noncoding RNAs deregulated in pancreatic adenocarcinoma[J]. Cell Oncol, 2022, 45(3): 479-504.
doi: 10.1007/s13402-022-00678-5 |
[78] |
KANDIMALLA R, SHIMURA T, MALLIK S, et al. Identification of serum miRNA signature and establishment of a nomogram for risk stratification in patients with pancreatic ductal adenocarcinoma[J]. Ann Surg, 2022, 275(1): e229-e237.
doi: 10.1097/SLA.0000000000003945 |
[79] |
KONNO M, KOSEKI J, ASAI A, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers[J]. Nat Commun, 2019, 10(1): 3888.
doi: 10.1038/s41467-019-11826-1 pmid: 31467274 |
[80] |
COUTO N, ELZANOWSKA J, MAIA J, et al. IgG + extracellular vesicles measure therapeutic response in advanced pancreatic cancer[J]. Cells, 2022, 11(18): 2800.
doi: 10.3390/cells11182800 |
[81] |
BHANDARE M S, PARRAY A, CHAUDHARI V A, et al. Minimally invasive surgery for pancreatic cancer-are we there yet? A narrative review[J]. Chin Clin Oncol, 2022, 11(1): 3.
doi: 10.21037/cco-21-131 |
[82] |
TOPAL H, AERTS R, LAENEN A, et al. Survival after minimally invasive vs open surgery for pancreatic adenocarcinoma[J]. JAMA Netw Open, 2022, 5(12): e2248147.
doi: 10.1001/jamanetworkopen.2022.48147 |
[83] |
SUTTON T L, POTTER K C, MAYO S C, et al. Complications in distal pancreatectomy versus radical antegrade modular pancreatosplenectomy: a disease risk score analysis utilizing national surgical quality improvement project data[J]. World J Surg, 2022, 46(7): 1768-1775.
doi: 10.1007/s00268-022-06545-6 pmid: 35403874 |
[84] | LI B, GUO S W, YIN X Y, et al. Risk factors of positive resection margin differ in pancreaticoduodenectomy and distal pancreatosplenectomy for pancreatic ductal adenocarcinoma undergoing upfront surgery[J]. Asian J Surg, 2022: S1015-S9584(22)01438-5. |
[85] | HACKERT T, KLAIBER U, HINZ U, et al. Portal vein resection in pancreatic cancer surgery: risk of thrombosis and radicality determine survival[J]. Ann Surg, 2022. [Online ahead of print] |
[86] | ZHOU Y P, WANG J T, ZHANG S L, et al. A CT radiomics-based risk score for preoperative estimation of intraoperative superior mesenteric-portal vein involvement in pancreatic ductal adenocarcinoma[J]. Ann Surg Oncol, 2022. [Online ahead of print] |
[87] |
SAHLSTRÖM E, BEREZA-CARLSON P, NILSSON J, et al. Risk factors and outcomes for patients with pancreatic cancer undergoing surgical exploration without resection due to metastatic disease: a national cohort study[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(3): 279-284.
doi: 10.1016/j.hbpd.2022.02.003 |
[88] |
ZAMBIRINIS C P, MIDYA A, CHAKRABORTY J, et al. Recurrence after resection of pancreatic cancer: can radiomics predict patients at greatest risk of liver metastasis?[J]. Ann Surg Oncol, 2022, 29(8): 4962-4974.
doi: 10.1245/s10434-022-11579-0 pmid: 35366706 |
[89] |
ASAKURA Y, TOYAMA H, ISHIDA J, et al. Clinicopathological variables and risk factors for lung recurrence after resection of pancreatic ductal adenocarcinoma[J]. Asian J Surg, 2023, 46(1): 207-212.
doi: 10.1016/j.asjsur.2022.03.043 |
[90] |
PADRÓN L J, MAURER D M, O'HARA M H, et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial[J]. Nat Med, 2022, 28(6): 1167-1177.
doi: 10.1038/s41591-022-01829-9 pmid: 35662283 |
[91] |
VERSTEIJNE E, VAN DAM J L, SUKER M, et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial[J]. J Clin Oncol, 2022, 40(11): 1220-1230.
doi: 10.1200/JCO.21.02233 |
[92] |
YAMAGUCHI J, YOKOYAMA Y, FUJⅡ T, et al. Results of a phase Ⅱ study on the use of neoadjuvant chemotherapy (FOLFIRINOX or GEM/nab-PTX) for borderline-resectable pancreatic cancer (NUPAT-01)[J]. Ann Surg, 2022, 275(6): 1043-1049.
doi: 10.1097/SLA.0000000000005430 |
[93] |
CANON J, REX K, SAIKI A Y, et al. The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1 |
[94] |
FELL J B, FISCHER J P, BAER B R, et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer[J]. J Med Chem, 2020, 63(13): 6679-6693.
doi: 10.1021/acs.jmedchem.9b02052 |
[95] |
KWAN A K, PIAZZA G A, KEETON A B, et al. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors[J]. J Exp Clin Cancer Res, 2022, 41(1): 27.
doi: 10.1186/s13046-021-02225-w |
[96] | KEMP S B, CHENG N, MARKOSYAN N, et al. Efficacy of a small molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer[J]. Cancer Discov, 2022: CD-22-1066. |
[97] |
MOKHTECH M, MICCIO J A, JOHUNG K, et al. Multiagent chemotherapy followed by stereotactic body radiotherapy versus conventional radiotherapy for resected pancreas cancer[J]. Am J Clin Oncol, 2022, 45(11): 450-457.
doi: 10.1097/COC.0000000000000947 |
[98] |
NAFFOUJE S A, SABESAN A, KIM D W, et al. Adjuvant chemoradiotherapy in resected pancreatic ductal adenocarcinoma: where does the benefit lie? A nomogram for risk stratification and patient selection[J]. J Gastrointest Surg, 2022, 26(2): 376-386.
doi: 10.1007/s11605-021-05130-x |
[99] |
RUTENBERG M S, NICHOLS R C. Proton beam radiotherapy for pancreas cancer[J]. J Gastrointest Oncol, 2020, 11(1): 166-175.
doi: 10.21037/jgo.2019.03.02 pmid: 32175120 |
[100] |
KOBEISSI J M, SIMONE C B 2nd, LIN H B, et al. Proton therapy in the management of pancreatic cancer[J]. Cancers, 2022, 14(11): 2789.
doi: 10.3390/cancers14112789 |
[101] |
NAUMANN M, CZEMPIEL T, LÖßNER A J, et al. Combined systemic drug treatment with proton therapy: investigations on patient-derived organoids[J]. Cancers, 2022, 14(15): 3781.
doi: 10.3390/cancers14153781 |
[102] |
SELVANESAN B C, CHANDRA D, QUISPE-TINTAYA W, et al. Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice[J]. Sci Transl Med, 2022, 14(637): eabc1600.
doi: 10.1126/scitranslmed.abc1600 |
[103] | MARIN I, BOIX O, GARCIA-GARIJO A, et al. Cellular senescence is immunogenic and promotes anti-tumor immunity[J]. Cancer Discov, 2022: CD-22-0523. |
[104] |
HEWITT D B, NISSEN N, HATOUM H, et al. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-L (HyperAcute-pancreas) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer[J]. Ann Surg, 2022, 275(1): 45-53.
doi: 10.1097/SLA.0000000000004669 |
[105] | ZHANG Z W, LIU X D, ZHOU L R, et al. Investigation of clinical application of claudin 18 isoform 2 in pancreatic ductal adenocarcinoma: a retrospective analysis of 302 Chinese patients[J]. Histol Histopathol, 2022, 37(10): 1031-1040. |
[106] |
MELIEF C J M. T-cell immunotherapy against mutant KRAS for pancreatic cancer[J]. N Engl J Med, 2022, 386(22): 2143-2144.
doi: 10.1056/NEJMe2204283 |
[1] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[2] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[3] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[4] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[5] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[6] | 徐梓淇, 胡睿智, 李军建, 王红霞, 桑友洲. 甲基化驱动基因IFFO1在胰腺癌诊断和预后中的作用及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2024, 34(11): 998-1010. |
[7] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[8] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
[9] | 渠宁, 王钰婷, 马奔, 王宇. 2022年度甲状腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(5): 423-430. |
[10] | 蒋金玲, 周尘飞, 王超, 赵丽琴, 吴珺玮, 张俊. 2022年度胃癌研究和诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 303-314. |
[11] | 赵海潮, 高强. 2022年度肝癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 315-326. |
[12] | 田熙, 徐文浩, 朱殊璇, 艾合太木江·安外尔, 宿佳琦, 叶世琪, 瞿元元, 施国海, 张海梁, 叶定伟. 2022年度肾细胞癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 191-200. |
[13] | 郑盛锋, 朱一平, 叶定伟. 2022年度膀胱癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 201-209. |
[14] | 潘剑, 朱耀, 戴波, 叶定伟. 2022年度前列腺癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 210-217. |
[15] | 曾铖, 张剑. 2022年度ADC在胰腺癌领域的研究新进展及展望[J]. 中国癌症杂志, 2023, 33(3): 235-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn