[1] |
ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.
doi: 10.1016/S0140-6736(17)33326-3
|
[2] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660
|
[3] |
HAN X L, BRYSON P D, ZHAO Y F, et al. Masked chimeric antigen receptor for tumor-specific activation[J]. Mol Ther, 2017, 25(1): 274-284.
doi: S1525-0016(16)45366-9
pmid: 28129121
|
[4] |
赵玲娣, 高全立. CAR-T细胞在肿瘤治疗中的研究进展[J]. 中国肿瘤临床, 2015, 42(3): 190-194.
|
|
ZHAO L D, GAO Q L. Research progress of CAR T-cell in tumor therapy[J]. Chin J Clin Oncol, 2015, 42(3): 190-194.
|
[5] |
荣斌, 吴纯启, 原野, 等. CAR-T细胞治疗产品及其非临床评价研究概述[J]. 中南药学, 2019, 17(9): 1381-1385.
|
|
RONG B, WU C Q, YUAN Y, et al. Non-clinical evaluation of CAR-T cell therapy products[J]. Central South Pharm, 2019, 17(9): 1381-1385.
|
[6] |
SHKLOVSKAYA E, RIZOS H. MHC class Ⅰ deficiency in solid tumors and therapeutic strategies to overcome it[J]. Int J Mol Sci, 2021, 22(13): 6741.
doi: 10.3390/ijms22136741
|
[7] |
GARRIDO F, APTSIAURI N. Cancer immune escape: MHC expression in primary tumours versus metastases[J]. Immunology, 2019, 158(4): 255-266.
doi: 10.1111/imm.13114
pmid: 31509607
|
[8] |
常征, 陈学武, 王丽, 等. 嵌合抗原受体T细胞治疗恶性肿瘤的研究进展[J]. 药学研究, 2015, 34(9): 534-536.
|
|
CHANG Z, CHEN X W, WANG L, et al. Research progress of chimeric antigen receptor modified T cells in malignant tumor[J]. J Pharm Res, 2015, 34(9): 534-536.
|
[9] |
LIM W A, JUNE C H. The principles of engineering immune cells to treat cancer[J]. Cell, 2017, 168(4): 724-740.
doi: S0092-8674(17)30064-8
pmid: 28187291
|
[10] |
JUNE C H, O’CONNOR R S, KAWALEKAR O U, et al. CAR-T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382): 1361-1365.
doi: 10.1126/science.aar6711
|
[11] |
ZOU F, TAN J Z, LIU T, et al. The CD39 + HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8 + T cells exhibit potent anti-HCC activity[J]. Mol Ther, 2021, 29(5): 1794-1807.
doi: 10.1016/j.ymthe.2021.01.021
|
[12] |
TANG X J, ZHOU Y, LI W J, et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo[J]. J Biomed Res, 2014, 28(6): 468-475.
doi: 10.7555/JBR.28.20140066
pmid: 25469116
|
[13] |
彭灿灿, 王惠明. CAR-T细胞治疗实体瘤的脱靶效应及优化方略[J]. 中国免疫学杂志, 2021, 37(22): 2754-2758.
|
|
PENG C C, WANG H M. Off-target effect and optimization of CAR-T cell therapy in solid tumors[J]. Chin J Immunol, 2021, 37(22): 2754-2758.
|
[14] |
SCHUBERT M L, SCHMITT M, WANG L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy[J]. Ann Oncol, 2021, 32(1): 34-48.
doi: 10.1016/j.annonc.2020.10.478
pmid: 33098993
|
[15] |
WANG Z G, WU Z Q, LIU Y, et al. New development in CAR-T cell therapy[J]. J Hematol Oncol, 2017, 10(1): 53.
doi: 10.1186/s13045-017-0423-1
|
[16] |
QI C S, GONG J F, LI J, et al. Claudin18.2-specific CAR-T cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6): 1189-1198.
doi: 10.1038/s41591-022-01800-8
|
[17] |
TCHOU J, ZHAO Y B, LEVINE B L, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer[J]. Cancer Immunol Res, 2017, 5(12): 1152-1161.
doi: 10.1158/2326-6066.CIR-17-0189
pmid: 29109077
|
[18] |
XIAO Y, YU D H. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.
doi: 10.1016/j.pharmthera.2020.107753
|
[19] |
LUO X, XU J, YU J H, et al. Shaping immune responses in the tumor microenvironment of ovarian cancer[J]. Front Immunol, 2021, 12: 692360.
doi: 10.3389/fimmu.2021.692360
|
[20] |
SATILMIS B, SAHIN T T, CICEK E, et al. Hepatocellular carcinoma tumor microenvironment and its implications in terms of anti-tumor immunity: future perspectives for new therapeutics[J]. J Gastrointest Canc, 2021, 52(4): 1198-1205.
doi: 10.1007/s12029-021-00725-8
|
[21] |
KUMARI S, ADVANI D, SHARMA S, et al. Combinatorial therapy in tumor microenvironment: where do we stand?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188585.
doi: 10.1016/j.bbcan.2021.188585
|
[22] |
PLUNDRICH D, CHIKHLADZE S, FICHTNER-FEIGL S, et al. Molecular mechanisms of tumor immunomodulation in the microenvironment of colorectal cancer[J]. Int J Mol Sci, 2022, 23(5): 2782.
doi: 10.3390/ijms23052782
|
[23] |
SIMSEK H, KLOTZSCH E. The solid tumor microenvironment-Breaking the barrier for T cells[J]. BioEssays, 2022, 44(6): 2100285.
doi: 10.1002/bies.202100285
|
[24] |
GOLIWAS K F, DESHANE J S, ELMETS C A, et al. Moving immune therapy forward targeting TME[J]. Physiol Rev, 2021, 101(2): 417-425.
doi: 10.1152/physrev.00008.2020
|
[25] |
LI Y, ZHAO L, LI X F. Hypoxia and the tumor microenvironment[J]. Technol Cancer Res Treat, 2021, 20: 15330338211036304.
|
[26] |
SINGH S R, RAMESHWAR P, SIEGEL P. Targeting tumor microenvironment in cancer therapy[J]. Cancer Lett, 2016, 380(1): 203-204.
doi: 10.1016/j.canlet.2016.04.009
pmid: 27060765
|
[27] |
BERAHOVICH R, LIU X H, ZHOU H, et al. Hypoxia selectively impairs CAR-T cells in vitro[J]. Cancers (Basel), 2019, 11(5): 602.
doi: 10.3390/cancers11050602
|
[28] |
SCHILIRO C, FIRESTEIN B L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation[J]. Cells, 2021, 10(5): 1056.
doi: 10.3390/cells10051056
|
[29] |
VAUPEL P, MULTHOFF G. Revisiting the Warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757.
doi: 10.1113/JP278810
|
[30] |
WANG B, ZHAO Q, ZHANG Y Y, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy[J]. J Exp Clin Cancer Res, 2021, 40(1): 24.
doi: 10.1186/s13046-020-01820-7
|
[31] |
ALBADARI N, DENG S S, LI W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy[J]. Expert Opin Drug Discov, 2019, 14(7): 667-682.
doi: 10.1080/17460441.2019.1613370
|
[32] |
AL TAMEEMI W, DALE T P, AL-JUMAILY R M K, et al. Hypoxia-modified cancer cell metabolism[J]. Front Cell Dev Biol, 2019, 7: 4.
doi: 10.3389/fcell.2019.00004
pmid: 30761299
|
[33] |
FALLAH J, RINI B I. HIF inhibitors: status of current clinical development[J]. Curr Oncol Rep, 2019, 21(1): 6.
doi: 10.1007/s11912-019-0752-z
pmid: 30671662
|
[34] |
COWMAN S J, KOH M Y. Revisiting the HIF switch in the tumor and its immune microenvironment[J]. Trends Cancer, 2022, 8(1): 28-42.
doi: 10.1016/j.trecan.2021.10.004
|
[35] |
LEE J W, BAE S H, JEONG J W, et al.Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions[J]. Exp Mol Med, 2004, 36(1): 1-12.
doi: 10.1038/emm.2004.1
|
[36] |
朱秀秀, 王玲, 沈俊杰, 等. 靶向PSCA的缺氧诱导型CAR-T的构建及体外效能研究[J]. 中国细胞生物学学报, 2019, 41(4): 636-644.
|
|
ZHU X X, WANG L, SHEN J J, et al. Construction and in vitro potency investigation of hypoxia-inducible CAR-T targeting PSCA[J]. Chin J Cell Biol, 2019, 41(4): 636-644.
|
[37] |
LEE J W, KO J, JU C, et al. Hypoxia signaling in human diseases and therapeutic targets[J]. Exp Mol Med, 2019, 51(6): 1-13.
doi: 10.1038/s12276-019-0235-1
pmid: 31221962
|
[38] |
VITO A, EL-SAYES N, MOSSMAN K. Hypoxia-driven immune escape in the tumor microenvironment[J]. Cells, 2020, 9(4): 992.
doi: 10.3390/cells9040992
|
[39] |
KE Q D, COSTA M. Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
doi: 10.1124/mol.106.027029
pmid: 16887934
|
[40] |
CORRADO C, FONTANA S. Hypoxia and HIF signaling: one axis with divergent effects[J]. Int J Mol Sci, 2020, 21(16): 5611.
doi: 10.3390/ijms21165611
|
[41] |
JUILLERAT A, MARECHAL A, FILHOL J M, et al. An oxygen sensitive self-decision making engineered CAR T-cell[J]. Sci Rep, 2017, 7: 39833.
doi: 10.1038/srep39833
pmid: 28106050
|
[42] |
LIAO Q B, HE H, MAO Y Y, et al. Engineering T cells with hypoxia-inducible chimeric antigen receptor (HiCAR) for selective tumor killing[J]. Biomark Res, 2020, 8(1): 56.
doi: 10.1186/s40364-020-00238-9
pmid: 33292642
|
[43] |
陈文艳, 熊建萍. 肿瘤缺氧及其靶向治疗研究进展[J]. 国际肿瘤学杂志, 2006, 33(1): 8-11.
|
|
CHEN W Y, XIONG J P. Research progress of tumor hypoxia and its targeted therapy[J]. J Int Oncol, 2006, 33(1): 8-11.
|
[44] |
KOSTI P, OPZOOMER J W, LARIOS-MARTINEZ K I, et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors[J]. Cell Rep Med, 2021, 2(4): 100227.
|
[45] |
BRANDT L J B, BARNKOB M B, MICHAELS Y S, et al. Emerging approaches for regulation and control of CAR T cells: a mini review[J]. Front Immunol, 2020, 11: 326.
doi: 10.3389/fimmu.2020.00326
pmid: 32194561
|
[46] |
LIIKANEN I, LAUHAN C, QUON S, et al. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8 + T cells[J]. J Clin Invest, 2021, 131(7): e143729.
doi: 10.1172/JCI143729
|