中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (2): 95-102.doi: 10.19401/j.cnki.1007-3639.2023.02.001
收稿日期:
2023-01-08
修回日期:
2023-01-24
出版日期:
2023-02-28
发布日期:
2023-03-22
通信作者:
邵志敏(ORCID:0000-0002-4503-148X),主任医师,教授,复旦大学肿瘤研究所所长、复旦大学乳腺癌研究所所长,复旦大学附属肿瘤医院大外科主任兼乳腺外科主任。
作者简介:
王子彧(ORCID:0000-0002-3684-0816),复旦大学附属肿瘤医院博士研究生。
WANG Ziyu(), XIAO Yi, JIANG Yizhou, SHAO Zhimin(
)
Received:
2023-01-08
Revised:
2023-01-24
Published:
2023-02-28
Online:
2023-03-22
Contact:
SHAO Zhimin
文章分享
摘要:
世界卫生组织(World Health Organization,WHO)国际癌症研究机构发布的数据显示,乳腺癌现已成为全球女性发病率最高的恶性肿瘤,严重威胁女性健康。2022年乳腺癌基础与转化研究领域进展颇丰,深化了对乳腺癌分子本质的认识,为乳腺癌精准治疗提供了新的思路。本文从肿瘤代谢、肿瘤微环境、微生物与肿瘤、肿瘤转移、肿瘤耐药与药物筛选、多组学研究、人工智能共7个方面对2022年乳腺癌基础与转化研究的年度进展进行总结,并对乳腺癌研究未来的发展方向进行展望,以期为乳腺癌研究的进一步深化提供参考。
中图分类号:
王子彧, 肖毅, 江一舟, 邵志敏. 2022年乳腺癌基础与转化研究进展[J]. 中国癌症杂志, 2023, 33(2): 95-102.
WANG Ziyu, XIAO Yi, JIANG Yizhou, SHAO Zhimin. Advances in fundamental and translational breast cancer research in 2022[J]. China Oncology, 2023, 33(2): 95-102.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
JIANG H M, WEI H M, WANG H, et al. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer[J]. Cell Death Dis, 2022, 13(3): 206.
doi: 10.1038/s41419-022-04632-z pmid: 35246504 |
[3] |
ZHU W J, CHEN X, GUO X Y, et al. Low glucose-induced overexpression of HOXC-AS3 promotes metabolic reprogramming of breast cancer[J]. Cancer Res, 2022, 82(5): 805-818.
doi: 10.1158/0008-5472.CAN-21-1179 pmid: 35031573 |
[4] |
CHEN X M, LUO R, ZHANG Y M, et al. Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer[J]. Nat Commun, 2022, 13(1): 7160.
doi: 10.1038/s41467-022-34702-x pmid: 36418319 |
[5] |
PARIDA P K, MARQUEZ-PALENCIA M, NAIR V, et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness[J]. Cell Metab, 2022, 34(1): 90-105.e7.
doi: 10.1016/j.cmet.2021.12.001 pmid: 34986341 |
[6] |
GOMES A P, ILTER D, LOW V, et al. Altered propionate metabolism contributes to tumour progression and aggressiveness[J]. Nat Metab, 2022, 4(4): 435-443.
doi: 10.1038/s42255-022-00553-5 pmid: 35361954 |
[7] |
GONG Z, LI Q, SHI J Y, et al. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells[J]. Cell Metab, 2022, 34(12): 1960-1976.e9.
doi: 10.1016/j.cmet.2022.11.003 pmid: 36476935 |
[8] |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[9] |
TANG D L, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
doi: 10.1038/s41422-020-00441-1 pmid: 33268902 |
[10] |
LI H Y, YANG P H, WANG J H, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk[J]. J Hematol Oncol, 2022, 15(1): 2.
doi: 10.1186/s13045-021-01223-x |
[11] |
WU M M, ZHANG X, ZHANG W J, et al. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis[J]. Nat Commun, 2022, 13(1): 1371.
doi: 10.1038/s41467-022-29018-9 pmid: 35296660 |
[12] |
ZOU Y T, ZHENG S Q, XIE X H, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer[J]. Nat Commun, 2022, 13(1): 2672.
doi: 10.1038/s41467-022-30217-7 pmid: 35562334 |
[13] |
YANG F, XIAO Y, DING J H, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metab, 2023, 35(1): 84-100.e8.
doi: 10.1016/j.cmet.2022.09.021 |
[14] |
ZHANG H L, HU B X, LI Z L, et al. PKCβⅡ phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J]. Nat Cell Biol, 2022, 24(1): 88-98.
doi: 10.1038/s41556-021-00818-3 |
[15] |
XIE Y Z, WANG B Y, ZHAO Y N, et al. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis[J]. J Hematol Oncol, 2022, 15(1): 72.
doi: 10.1186/s13045-022-01297-1 |
[16] |
LI K, LIN C C, LI M H, et al. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy[J]. ACS Nano, 2022, 16(2): 2381-2398.
doi: 10.1021/acsnano.1c08664 pmid: 35041395 |
[17] | YANG J, JIA Z G, ZHANG J, et al. Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance[J]. Adv Healthc Mater, 2022, 11(13): e2102799. |
[18] |
PAN W L, TAN Y, MENG W, et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework[J]. Biomaterials, 2022, 283: 121449.
doi: 10.1016/j.biomaterials.2022.121449 |
[19] | ZHOU A W, FANG T L, CHEN K R, et al. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer[J]. Small, 2022, 18(12): e2106568. |
[20] |
SEUNG E, XING Z, WU L, et al. A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells[J]. Nature, 2022, 603(7900): 328-334.
doi: 10.1038/s41586-022-04439-0 |
[21] |
NALIO RAMOS R, MISSOLO-KOUSSOU Y, GERBER-FERDER Y, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer[J]. Cell, 2022, 185(7): 1189-1207.e25.
doi: 10.1016/j.cell.2022.02.021 |
[22] |
NIXON B G, KUO F S, JI L L, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer[J]. Immunity, 2022, 55(11): 2044-2058.e5.
doi: 10.1016/j.immuni.2022.10.002 |
[23] |
BLOMBERG O S, SPAGNUOLO L, GARNER H, et al. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer[J]. Cancer Cell, 2023, 41(1): 106-123.e10.
doi: 10.1016/j.ccell.2022.11.014 |
[24] |
KAY E J, PATERSON K, RIERA-DOMINGO C, et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix[J]. Nat Metab, 2022, 4(6): 693-710.
doi: 10.1038/s42255-022-00582-0 pmid: 35760868 |
[25] |
PAPANICOLAOU M, PARKER A L, YAM M, et al. Temporal profiling of the breast tumour microenvironment reveals collagen Ⅻ as a driver of metastasis[J]. Nat Commun, 2022, 13(1): 4587.
doi: 10.1038/s41467-022-32255-7 |
[26] |
HONGU T, PEIN M, INSUA-RODRÍGUEZ J, et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs[J]. Nat Cancer, 2022, 3(4): 486-504.
doi: 10.1038/s43018-022-00353-6 |
[27] |
ZHU Q Z, ZHU Y, HEPLER C, et al. Adipocyte mesenchymal transition contributes to mammary tumor progression[J]. Cell Rep, 2022, 40(11): 111362.
doi: 10.1016/j.celrep.2022.111362 |
[28] | WANG Y Q, XIE H L, WU Y, et al. Bioinspired lipoproteins of furoxans-oxaliplatin remodel physical barriers in tumor to potentiate T-cell infiltration[J]. Adv Mater, 2022, 34(14): e2110614. |
[29] |
NIA H T, MUNN L L, JAIN R K. Physical traits of cancer[J]. Science, 2020, 370(6516): eaaz0868.
doi: 10.1126/science.aaz0868 |
[30] |
BERA K, KIEPAS A, GODET I, et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination[J]. Nature, 2022, 611(7935): 365-373.
doi: 10.1038/s41586-022-05394-6 |
[31] |
ROMANI P, NIRCHIO N, ARBOIT M, et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance[J]. Nat Cell Biol, 2022, 24(2): 168-180.
doi: 10.1038/s41556-022-00843-w pmid: 35165418 |
[32] |
HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46.
doi: 10.1158/2159-8290.CD-21-1059 pmid: 35022204 |
[33] |
HIEKEN T J, CHEN J, HOSKIN T L, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease[J]. Sci Rep, 2016, 6: 30751.
doi: 10.1038/srep30751 pmid: 27485780 |
[34] |
NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980.
doi: 10.1126/science.aay9189 pmid: 32467386 |
[35] |
WANG H, RONG X Y, ZHAO G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594.e8.
doi: 10.1016/j.cmet.2022.02.010 pmid: 35278352 |
[36] |
FU A K, YAO B Q, DONG T T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372.e26.
doi: 10.1016/j.cell.2022.02.027 pmid: 35395179 |
[37] |
DENG H, MUTHUPALANI S, ERDMAN S, et al. Translocation of helicobacter hepaticus synergizes with myeloid-derived suppressor cells and contributes to breast carcinogenesis[J]. Oncoimmunology, 2022, 11(1): 2057399.
doi: 10.1080/2162402X.2022.2057399 |
[38] |
NARUNSKY-HAZIZA L, SEPICH-POORE G D, LIVYATAN I, et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions[J]. Cell, 2022, 185(20): 3789-3806.e17.
doi: 10.1016/j.cell.2022.09.005 |
[39] |
DOHLMAN A B, KLUG J, MESKO M, et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors[J]. Cell, 2022, 185(20): 3807-3822.e12.
doi: 10.1016/j.cell.2022.09.015 pmid: 36179671 |
[40] |
XIAO S S, SHI H, ZHANG Y, et al. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer[J]. J Nanobiotechnol, 2022, 20(1): 178.
doi: 10.1186/s12951-022-01373-1 pmid: 35366890 |
[41] |
NGUYEN B, FONG C, LUTHRA A, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25, 000 patients[J]. Cell, 2022, 185(3): 563-575.e11.
doi: 10.1016/j.cell.2022.01.003 |
[42] | GARCIA-RECIO S, HINOUE T, WHEELER G L, et al. Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis[J]. Nat Cancer, 2022[Epub ahead of print]. |
[43] |
GONG Z, LI Q, SHI J Y, et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment[J]. Immunity, 2022, 55(8): 1483-1500.e9.
doi: 10.1016/j.immuni.2022.07.001 pmid: 35908547 |
[44] |
QI M Y, XIA Y, WU Y J, et al. Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression[J]. Nat Commun, 2022, 13(1): 897.
doi: 10.1038/s41467-022-28438-x pmid: 35173168 |
[45] |
GUTWILLIG A, SANTANA-MAGAL N, FARHAT-YOUNIS L, et al. Transient cell-in-cell formation underlies tumor relapse and resistance to immunotherapy[J]. Elife, 2022, 11: e80315.
doi: 10.7554/eLife.80315 |
[46] |
BALDOMINOS P, BARBERA-MOURELLE A, BARREIRO O, et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche[J]. Cell, 2022, 185(10): 1694-1708.e19.
doi: 10.1016/j.cell.2022.03.033 |
[47] |
CHANG C A, JEN J, JIANG S W, et al. Ontogeny and vulnerabilities of drug-tolerant persisters in HER2+ breast cancer[J]. Cancer Discov, 2022, 12(4): 1022-1045.
doi: 10.1158/2159-8290.CD-20-1265 |
[48] |
MARSOLIER J, PROMPSY P, DURAND A, et al. H3K27me3 conditions chemotolerance in triple-negative breast cancer[J]. Nat Genet, 2022, 54(4): 459-468.
doi: 10.1038/s41588-022-01047-6 pmid: 35410383 |
[49] |
LIU X W, LU Y W, HUANG J Y, et al. CD16+ fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition[J]. Cancer Cell, 2022, 40(11): 1341-1357.e13.
doi: 10.1016/j.ccell.2022.10.015 |
[50] |
LI H Z, XIAO Y, LI Q, et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1[J]. Cancer Cell, 2022, 40(1): 36-52.e9.
doi: 10.1016/j.ccell.2021.11.002 |
[51] |
MA S J, ZHAO Y, LEE W C, et al. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple-negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy[J]. Nat Commun, 2022, 13(1): 4118.
doi: 10.1038/s41467-022-31764-9 |
[52] |
JAAKS P, COKER E A, VIS D J, et al. Effective drug combinations in breast, colon and pancreatic cancer cells[J]. Nature, 2022, 603(7899): 166-173.
doi: 10.1038/s41586-022-04437-2 |
[53] |
GUILLEN K P, FUJITA M, BUTTERFIELD A J, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology[J]. Nat Cancer, 2022, 3(2): 232-250.
doi: 10.1038/s43018-022-00337-6 |
[54] |
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440.e5.
doi: 10.1016/j.ccell.2019.02.001 |
[55] |
BERTUCCI F, NG C K Y, PATSOURIS A, et al. Genomic characterization of metastatic breast cancers[J]. Nature, 2019, 569(7757): 560-564.
doi: 10.1038/s41586-019-1056-z |
[56] |
MERTINS P, MANI D R, RUGGLES K V, et al. Proteogenomics connects somatic mutations to signalling in breast cancer[J]. Nature, 2016, 534(7605): 55-62.
doi: 10.1038/nature18003 |
[57] |
CURTIS C, SHAH S P, CHIN S F, et al. The genomic and transcriptomic architecture of 2 000 breast tumours reveals novel subgroups[J]. Nature, 2012, 486(7403): 346-352.
doi: 10.1038/nature10983 |
[58] |
PEREIRA B, CHIN S F, RUEDA O M, et al. Erratum: the somatic mutation profiles of 2, 433 breast cancers refine their genomic and transcriptomic landscapes[J]. Nat Commun, 2016, 7: 11908.
doi: 10.1038/ncomms11908 |
[59] |
BARECHE Y, VENET D, IGNATIADIS M, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis[J]. Ann Oncol, 2018, 29(4): 895-902.
doi: S0923-7534(19)45470-7 pmid: 29365031 |
[60] |
XIAO Y, MA D, YANG Y S, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer[J]. Cell Res, 2022, 32(5): 477-490.
doi: 10.1038/s41422-022-00614-0 pmid: 35105939 |
[61] | JIANG L, YOU C, XIAO Y, et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer[J]. Cell Rep Med, 2022, 3(7): 100694. |
[62] |
LOMAKIN A, SVEDLUND J, STRELL C, et al. Spatial genomics maps the structure, nature and evolution of cancer clones[J]. Nature, 2022, 611(7936): 594-602.
doi: 10.1038/s41586-022-05425-2 |
[63] |
FUNNELL T, O'FLANAGAN C H, WILLIAMS M J, et al. Single-cell genomic variation induced by mutational processes in cancer[J]. Nature, 2022, 612(7938): 106-115.
doi: 10.1038/s41586-022-05249-0 |
[64] |
MARTINI R, DELPE P, CHU T R, et al. African ancestry-associated gene expression profiles in triple-negative breast cancer underlie altered tumor biology and clinical outcome in women of African descent[J]. Cancer Discov, 2022, 12(11): 2530-2551.
doi: 10.1158/2159-8290.CD-22-0138 |
[65] |
STRAND S H, RIVERO-GUTIÉRREZ B, HOULAHAN K E, et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts[J]. Cancer Cell, 2022, 40(12): 1521-1536.e7.
doi: 10.1016/j.ccell.2022.10.021 |
[66] |
LIPS E H, KUMAR T, MEGALIOS A, et al. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer[J]. Nat Genet, 2022, 54(6): 850-860.
doi: 10.1038/s41588-022-01082-3 |
[67] |
RISOM T, GLASS D R, AVERBUKH I, et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma[J]. Cell, 2022, 185(2): 299-310.e18.
doi: 10.1016/j.cell.2021.12.023 pmid: 35063072 |
[68] |
YALA A, MIKHAEL P G, LEHMAN C, et al. Optimizing risk-based breast cancer screening policies with reinforcement learning[J]. Nat Med, 2022, 28(1): 136-143.
doi: 10.1038/s41591-021-01599-w pmid: 35027757 |
[69] |
WANG Y, ACS B, ROBERTSON S, et al. Improved breast cancer histological grading using deep learning[J]. Ann Oncol, 2022, 33(1): 89-98.
doi: 10.1016/j.annonc.2021.09.007 |
[70] |
SAMMUT S J, CRISPIN-ORTUZAR M, CHIN S F, et al. Multi-omic machine learning predictor of breast cancer therapy response[J]. Nature, 2022, 601(7894): 623-629.
doi: 10.1038/s41586-021-04278-5 |
[71] | ZHAO S, YAN C Y, LV H, et al. Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer[J]. Fundam Res, 2022[Epub ahead of print]. |
[1] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[2] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[3] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[4] | 张会强, 江泽飞. 2022年改变晚期乳腺癌临床实践的重要研究[J]. 中国癌症杂志, 2023, 33(2): 110-116. |
[5] | 杨贻兰, 赵旭, 陈星星, 汪宣伊, 金恺睿, 章真, 邵志敏, 郭小毛, 俞晓立. 乳腺导管原位癌的单中心预后分析[J]. 中国癌症杂志, 2022, 32(3): 228-233. |
[6] | 李语婕, 陈颢. 靶向TROP2在胰腺癌治疗中的潜力[J]. 中国癌症杂志, 2022, 32(3): 268-273. |
[7] | 丛斌斌, 王永胜. 激素受体阳性早期乳腺癌治疗现状与挑战[J]. 中国癌症杂志, 2021, 31(8): 689-696. |
[8] | 尹志海, 汪隽琦, 孟怡然, 许 青, 杨昭志. 患者生理特征参数对乳腺癌调强放疗摆位误差影响的研究[J]. 中国癌症杂志, 2021, 31(3): 198-202. |
[9] | 李芷君, 徐兵河. 乳腺癌芳香化酶抑制剂耐药的研究进展[J]. 中国癌症杂志, 2021, 31(2): 81-89. |
[10] | 孙瑞红,王 翔,沈丽娟,孟凡华,尹化斌 . 乳腺癌患者MRI体素内不相干运动成像中感兴趣区选择方法对参数一致性的影响[J]. 中国癌症杂志, 2019, 29(9): 700-708. |
[11] | 杨 珂,郑 容,林岩松. 儿童青少年甲状腺癌诊治指南解读及其进展——核医学部分[J]. 中国癌症杂志, 2019, 29(6): 401-411. |
[12] | 毕 钊,刘静静,陈 鹏,刘雁冰,赵 桐,孙 晓,邱鹏飞,王永胜. 乳腺癌新辅助化疗后内乳区前哨淋巴结活检研究[J]. 中国癌症杂志, 2019, 29(2): 131-135. |
[13] | 张凤春,左 丽,马 越,等. AJCC第7版与第8版分期对乳腺癌患者预后预测的比较分析[J]. 中国癌症杂志, 2019, 29(1): 45-51. |
[14] | 中国抗癌协会乳腺癌专业委员会(CBCS)中国医师协会外科医师分会乳腺外科医师专委会(CSBS). 乳腺肿瘤整形与乳房重建专家共识(2018年版)[J]. 中国癌症杂志, 2018, 28(6): 439-480. |
[15] | 张 燕,孙 晓,赵 桐,等. 术中快速预测乳腺癌非前哨淋巴结转移模型的建立与验证研究[J]. 中国癌症杂志, 2017, 27(5): 368-375. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn