中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (3): 210-217.doi: 10.19401/j.cnki.1007-3639.2023.03.003
收稿日期:
2023-01-30
修回日期:
2023-02-20
出版日期:
2023-03-30
发布日期:
2023-04-17
通信作者:
叶定伟(ORCID: 0000-0002-0836-391X),博士,主任医师,复旦大学附属肿瘤医院党委副书记、泌尿外科学科带头人。
作者简介:
潘剑(ORCID: 0000-0002-8361-7529),博士。
基金资助:
PAN Jian(), ZHU Yao, DAI Bo, YE Dingwei(
)
Received:
2023-01-30
Revised:
2023-02-20
Published:
2023-03-30
Online:
2023-04-17
Contact:
YE Dingwei
文章分享
摘要:
中国初诊的前列腺癌患者中40%~70%已处于转移性疾病阶段,而前列腺癌发生、发展的时空异质性及独特的转移模式使得基于活检组织取材分析免疫标志物的方式困难重重。大量基础与临床研究的推进,使得前列腺癌在发病机制、诊断方法、围手术期处理、放疗技术和晚期疾病的系统治疗等方面取得了新进展。这些成果不断丰富前列腺癌患者的诊治手段,改善其预后。现对2022年度前列腺癌研究领域的重大进展进行综述。
中图分类号:
潘剑, 朱耀, 戴波, 叶定伟. 2022年度前列腺癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 210-217.
PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022[J]. China Oncology, 2023, 33(3): 210-217.
[1] |
DÖRR M, HÖLZEL D, SCHUBERT-FRITSCHLE G, et al. Changes in prognostic and therapeutic parameters in prostate cancer from an epidemiological view over 20 years[J]. Oncol Res Treat, 2015, 38(1/2): 8-14.
doi: 10.1159/000371717 |
[2] |
UGAI T, SASAMOTO N, LEE H Y, et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications[J]. Nat Rev Clin Oncol, 2022, 19(10): 656-673.
doi: 10.1038/s41571-022-00672-8 pmid: 36068272 |
[3] |
HJELMBORG J B, SCHEIKE T, HOLST K, et al. The heritability of prostate cancer in the Nordic twin study of cancer[J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(11): 2303-2310.
doi: 10.1158/1055-9965.EPI-13-0568 |
[4] |
BROOK M N, NÍ RAGHALLAIGH H, GOVINDASAMI K, et al. Family history of prostate cancer and survival outcomes in the UK genetic prostate cancer study[J]. Eur Urol, 2023, 83(3): 257-266.
doi: 10.1016/j.eururo.2022.11.019 |
[5] |
CLEMENTS M B, VERTOSICK E A, GUERRIOS-RIVERA L, et al. Defining the impact of family history on detection of high-grade prostate cancer in a large multi-institutional cohort[J]. Eur Urol, 2022, 82(2): 163-169.
doi: 10.1016/j.eururo.2021.12.011 |
[6] | LI S, SILVESTRI V, LESLIE G, et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants[J]. J Clin Oncol, 2022, 40(14): 1529-1541. |
[7] |
ZHANG Y W, SONG M Y, MUCCI L A, et al. Zinc supplement use and risk of aggressive prostate cancer: a 30-year follow-up study[J]. Eur J Epidemiol, 2022, 37(12): 1251-1260.
doi: 10.1007/s10654-022-00922-0 pmid: 36326979 |
[8] |
YUAN J P, HOULAHAN K E, RAMANAND S G, et al. Prostate cancer transcriptomic regulation by the interplay of germline risk alleles, somatic mutations, and 3D genomic architecture[J]. Cancer Discov, 2022, 12(12): 2838-2855.
doi: 10.1158/2159-8290.CD-22-0027 |
[9] | SHANGGUAN X, MA Z H, YU M H, et al. Squalene epoxidase metabolic dependency is a targetable vulnerability in castration-resistant prostate cancer[J]. Cancer Res, 2022, 82(17): 3032-3044. |
[10] |
FONG K W, ZHAO J C, LU X D, et al. PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing[J]. Mol Cell, 2022, 82(24): 4611-4626.e7.
doi: 10.1016/j.molcel.2022.11.010 |
[11] |
PATEL R, FORD C A, RODGERS L, et al. Cyclocreatine suppresses creatine metabolism and impairs prostate cancer progression[J]. Cancer Res, 2022, 82(14): 2565-2575.
doi: 10.1158/0008-5472.CAN-21-1301 pmid: 35675421 |
[12] |
QIN L, CHUNG Y M, BERK M, et al. Hypoxia-reoxygenation couples 3βHSD1 enzyme and cofactor upregulation to facilitate androgen biosynthesis and hormone therapy resistance in prostate cancer[J]. Cancer Res, 2022, 82(13): 2417-2430.
doi: 10.1158/0008-5472.CAN-21-4256 pmid: 35536859 |
[13] |
GUAN X N, POLESSO F, WANG C J, et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy[J]. Nature, 2022, 606(7915): 791-796.
doi: 10.1038/s41586-022-04522-6 |
[14] | SENA L A, KUMAR R, SANIN D E, et al. Androgen receptor activity in prostate cancer dictates efficacy of bipolar androgen therapy through MYC[J]. J Clin Invest, 2022, 132(23): e162396. |
[15] |
WESTBROOK T C, GUAN X N, RODANSKY E, et al. Transcriptional profiling of matched patient biopsies clarifies molecular determinants of enzalutamide-induced lineage plasticity[J]. Nat Commun, 2022, 13(1): 5345.
doi: 10.1038/s41467-022-32701-6 pmid: 36109521 |
[16] |
XIE J J, HE H, KONG W N, et al. Targeting androgen receptor phase separation to overcome antiandrogen resistance[J]. Nat Chem Biol, 2022, 18(12): 1341-1350.
doi: 10.1038/s41589-022-01151-y pmid: 36229685 |
[17] | SHEN T, DONG B N, MENG Y L, et al. A COP1-GATA2 axis suppresses AR signaling and prostate cancer[J]. Proc Natl Acad Sci U S A, 2022, 119(43): e2205350119. |
[18] | JEONG J H, ZHONG S W, LI F Z, et al. Tumor-derived OBP2A promotes prostate cancer castration resistance[J]. J Exp Med, 2023, 220(3): e20211546. |
[19] |
LE T K, CHERIF C, OMABE K, et al. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer[J]. Mol Ther, 2023, 31(2): 471-486.
doi: 10.1016/j.ymthe.2022.08.005 |
[20] |
AL-NAKOUZI N, WANG C K, OO H Z, et al. Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer[J]. Nat Commun, 2022, 13(1): 4760.
doi: 10.1038/s41467-022-32530-7 |
[21] | SUN R, WEI T, DING D L, et al. CYCLIN K down-regulation induces androgen receptor gene intronic polyadenylation, variant expression and PARP inhibitor vulnerability in castration-resistant prostate cancer[J]. Proc Natl Acad Sci U S A, 2022, 119(39): e2205509119. |
[22] |
NGUYEN D T, YANG W, RENGANATHAN A, et al. Acetylated HOXB13 regulated super enhancer genes define therapeutic vulnerabilities of castration-resistant prostate cancer[J]. Clin Cancer Res, 2022, 28(18): 4131-4145.
doi: 10.1158/1078-0432.CCR-21-3603 |
[23] | ALMEIDA A, GABRIEL M, FIRLEJ V, et al. Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer[J]. J Extracell Vesicles, 2022, 11(5): e12210. |
[24] | DAO T N T, KIM M G, KOO B, et al. Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles[J]. J Extracell Vesicles, 2022, 11(2): e12195. |
[25] | CORRELL V L, OTTO J J, RISI C M, et al. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis[J]. J Extracell Vesicles, 2022, 11(2): e12184. |
[26] | LEE E, SHIN S, YIM S G, et al. Sessile droplet array for sensitive profiling of multiple extracellular vesicle immuno-subtypes[J]. Biosens Bioelectron, 2022, 218: 114760. |
[27] |
BRYANT A K, LEE K M, ALBA P R, et al. Association of prostate-specific antigen screening rates with subsequent metastatic prostate cancer incidence at US veterans health administration facilities[J]. JAMA Oncol, 2022, 8(12): 1747-1755.
doi: 10.1001/jamaoncol.2022.4319 pmid: 36279204 |
[28] |
CARLSSON S V, ARNSRUD GODTMAN R, PIHL C G, et al. Young age on starting prostate-specific antigen testing is associated with a greater reduction in prostate cancer mortality: 24-year follow-up of the göteborg randomized population-based prostate cancer screening trial[J]. Eur Urol, 2023, 83(2): 103-109.
doi: 10.1016/j.eururo.2022.10.006 |
[29] |
GODTMAN R A, KOLLBERG K S, PIHL C G, et al. The association between age, prostate cancer risk, and higher gleason score in a long-term screening program: results from the göteborg-1 prostate cancer screening trial[J]. Eur Urol, 2022, 82(3): 311-317.
doi: 10.1016/j.eururo.2022.01.018 pmid: 35120773 |
[30] | DENG M H, REN Z P, ZHANG H B, et al. Unamplified and real-time label-free miRNA-21 detection using solution-gated graphene transistors in prostate cancer diagnosis[J]. Adv Sci (Weinh), 2023, 10(4): e2205886. |
[31] |
NYBERG T, BROOK M N, FICORELLA L, et al. CanRisk-prostate: a comprehensive, externally validated risk model for the prediction of future prostate cancer[J]. J Clin Oncol, 2023, 41(5): 1092-1104.
doi: 10.1200/JCO.22.01453 |
[32] |
HUGOSSON J, MÅNSSON M, WALLSTRÖM J, et al. Prostate cancer screening with PSA and MRI followed by targeted biopsy only[J]. N Engl J Med, 2022, 387(23): 2126-2137.
doi: 10.1056/NEJMoa2209454 |
[33] |
GREY A D R, SCOTT R, SHAH B, et al. Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study[J]. Lancet Oncol, 2022, 23(3): 428-438.
doi: 10.1016/S1470-2045(22)00016-X pmid: 35240084 |
[34] |
WAGENSVELD I M, OSSES D F, GROENENDIJK P M, et al. A prospective multicenter comparison study of risk-adapted ultrasound-directed and magnetic resonance imaging-directed diagnostic pathways for suspected prostate cancer in biopsy-naïve men[J]. Eur Urol, 2022, 82(3): 318-326.
doi: 10.1016/j.eururo.2022.03.003 pmid: 35341658 |
[35] |
BRISBANE W G, PRIESTER A M, BALLON J, et al. Targeted prostate biopsy: umbra, penumbra, and value of perilesional sampling[J]. Eur Urol, 2022, 82(3): 303-310.
doi: 10.1016/j.eururo.2022.01.008 |
[36] |
ULANER G A, THOMSEN B, BASSETT J, et al. 18F-DCFPyL PET/CT for initially diagnosed and biochemically recurrent prostate cancer: prospective trial with pathologic confirmation[J]. Radiology, 2022, 305(2): 419-428.
doi: 10.1148/radiol.220218 |
[37] | OLIVIER P, GIRAUDET A L, SKANJETI A, et al. Phase Ⅲ study of 18F-PSMA-1007 versus 18F-fluorocholine PET/CT for localization of prostate cancer biochemical recurrence: a prospective, randomized, cross-over, multicenter study[J]. J Nucl Med, 2022: jnumed.122.264743. |
[38] |
GANDAGLIA G, MAZZONE E, STABILE A, et al. Prostate-specific membrane antigen radioguided surgery to detect nodal metastases in primary prostate cancer patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection: results of a planned interim analysis of a prospective phase 2 study[J]. Eur Urol, 2022, 82(4): 411-418.
doi: 10.1016/j.eururo.2022.06.002 pmid: 35879127 |
[39] |
KAOUK J H, FERGUSON E L, BEKSAC A T, et al. Single-port robotic transvesical partial prostatectomy for localized prostate cancer: initial series and description of technique[J]. Eur Urol, 2022, 82(5): 551-558.
doi: 10.1016/j.eururo.2022.07.017 pmid: 35970657 |
[40] |
DE BARROS H A, VAN OOSTEROM M N, DONSWIJK M L, et al. Robot-assisted prostate-specific membrane antigen-radioguided salvage surgery in recurrent prostate cancer using a DROP-IN gamma probe: the first prospective feasibility study[J]. Eur Urol, 2022, 82(1): 97-105.
doi: 10.1016/j.eururo.2022.03.002 pmid: 35339318 |
[41] |
STUDENT V JR, TUDOS Z, STUDENTOVA Z, et al. Effect of peritoneal fixation (PerFix) on lymphocele formation in robot-assisted radical prostatectomy with pelvic lymphadenectomy: results of a randomized prospective trial[J]. Eur Urol, 2023, 83(2): 154-162.
doi: 10.1016/j.eururo.2022.07.027 |
[42] |
TREE A C, OSTLER P, VAN DER VOET H, et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial[J]. Lancet Oncol, 2022, 23(10): 1308-1320.
doi: 10.1016/S1470-2045(22)00517-4 pmid: 36113498 |
[43] |
GROEN V H, HAUSTERMANS K, POS F J, et al. Patterns of failure following external beam radiotherapy with or without an additional focal boost in the randomized controlled FLAME trial for localized prostate cancer[J]. Eur Urol, 2022, 82(3): 252-257.
doi: 10.1016/j.eururo.2021.12.012 |
[44] |
POLLACK A, KARRISON T G, BALOGH A G, et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial[J]. Lancet, 2022, 399(10338): 1886-1901.
doi: 10.1016/S0140-6736(21)01790-6 pmid: 35569466 |
[45] |
AMAR U, KISHA N. High-dose radiotherapy or androgen deprivation therapy (HEAT) as treatment intensification for localized prostate cancer: an individual patient-data network meta-analysis from the MARCAP consortium[J]. Eur Urol, 2022, 82(1): 106-114.
doi: 10.1016/j.eururo.2022.04.003 pmid: 35469702 |
[46] |
ZAPATERO A, GUERRERO A, MALDONADO X, et al. High-dose radiotherapy and risk-adapted androgen deprivation in localised prostate cancer (DART 01/05): 10-year results of a phase 3 randomised, controlled trial[J]. Lancet Oncol, 2022, 23(5): 671-681.
doi: 10.1016/S1470-2045(22)00190-5 pmid: 35427469 |
[47] |
TILKI D, CHEN M H, WU J, et al. Adjuvant versus early salvage radiation therapy after radical prostatectomy for pN1 prostate cancer and the risk of death[J]. J Clin Oncol, 2022, 40(20): 2186-2192.
doi: 10.1200/JCO.21.02800 |
[48] |
TRAN P T, LOWE K, TSAI H L, et al. Phase Ⅱ randomized study of salvage radiation therapy plus enzalutamide or placebo for high-risk prostate-specific antigen recurrent prostate cancer after radical prostatectomy: the SALV-ENZA trial[J]. J Clin Oncol, 2023, 41(6): 1307-1317.
doi: 10.1200/JCO.22.01662 |
[49] | DEVOS G, TOSCO L, BALDEWIJNS M, et al. ARNEO: a randomized phase Ⅱ trial of neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer[J]. Eur Urol, 2022: S0302-S2838(22)02638-0. |
[50] |
EHDAIE B, TEMPANY C M, HOLLAND F, et al. MRI-guided focused ultrasound focal therapy for patients with intermediate-risk prostate cancer: a phase 2b, multicentre study[J]. Lancet Oncol, 2022, 23(7): 910-918.
doi: 10.1016/S1470-2045(22)00251-0 pmid: 35714666 |
[51] |
BÖGEMANN M, SHORE N D, SMITH M R, et al. Erratum to “efficacy and safety of darolutamide in patients with nonmetastatic castration-resistant prostate cancer stratified by prostate-specific antigen doubling time: Planned subgroup analysis of the phase 3 ARAMIS trial”[J]. Eur Urol, 2023, 83(2): e60.
doi: 10.1016/j.eururo.2022.11.018 |
[52] | PAN J, WEI Y, ZHANG T, et al. Stereotactic radiotherapy for lesions detected via 68Ga-prostate-specific membrane antigen and 18F-fluorodexyglucose positron emission tomography/computed tomography in patients with nonmetastatic prostate cancer with early prostate-specific antigen progression on androgen deprivation therapy: a prospective single-center study[J]. Eur Urol Oncol, 2022, 5(4): 420-427. |
[53] | SCHAEFFER E M, SRINIVAS S, ADRA N, et al. NCCN guidelines® insights: prostate cancer, version 1.2023[J]. J Natl Compr Canc Netw, 2022, 20(12): 1288-1298. |
[54] |
FIZAZI K, FOULON S, CARLES J, et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 ×2 factorial design[J]. Lancet, 2022, 399(10336): 1695-1707.
doi: 10.1016/S0140-6736(22)00367-1 |
[55] |
YANAGISAWA T, RAJWA P, THIBAULT C, et al. Androgen receptor signaling inhibitors in addition to docetaxel with androgen deprivation therapy for metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis[J]. Eur Urol, 2022, 82(6): 584-598.
doi: 10.1016/j.eururo.2022.08.002 pmid: 35995644 |
[56] |
ARMSTRONG A J, AZAD A A, IGUCHI T, et al. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer[J]. J Clin Oncol, 2022, 40(15): 1616-1622.
doi: 10.1200/JCO.22.00193 |
[57] |
GU W J, HAN W Q, LUO H, et al. Rezvilutamide versus bicalutamide in combination with androgen-deprivation therapy in patients with high-volume, metastatic, hormone-sensitive prostate cancer (CHART): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2022, 23(10): 1249-1260.
doi: 10.1016/S1470-2045(22)00507-1 pmid: 36075260 |
[58] |
AGARWAL N, TANGEN C M, HUSSAIN M H A, et al. Orteronel for metastatic hormone-sensitive prostate cancer: a multicenter, randomized, open-label phase Ⅲ trial (SWOG-1216)[J]. J Clin Oncol, 2022, 40(28): 3301-3309.
doi: 10.1200/JCO.21.02517 |
[59] |
SAAD F, STERNBERG C N, EFSTATHIOU E, et al. Prostate-specific antigen progression in enzalutamide-treated men with nonmetastatic castration-resistant prostate cancer: any rise in prostate-specific antigen may require closer monitoring[J]. Eur Urol, 2020, 78(6): 847-853.
doi: 10.1016/j.eururo.2020.08.025 pmid: 33010985 |
[60] |
MERSEBURGER A S, ATTARD G, ÅSTRÖM L, et al. Continuous enzalutamide after progression of metastatic castration-resistant prostate cancer treated with docetaxel (PRESIDE): an international, randomised, phase 3b study[J]. Lancet Oncol, 2022, 23(11): 1398-1408.
doi: 10.1016/S1470-2045(22)00560-5 pmid: 36265504 |
[61] |
SARTOR O, DE BONO J, CHI K N, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer[J]. N Engl J Med, 2021, 385(12): 1091-1103.
doi: 10.1056/NEJMoa2107322 |
[62] |
YU E Y, PIULATS J M, GRAVIS G, et al. Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort A study[J]. Eur Urol, 2023, 83(1): 15-26.
doi: 10.1016/j.eururo.2022.08.005 |
[63] |
YU E Y, KOLINSKY M P, BERRY W R, et al. Pembrolizumab plus docetaxel and prednisone in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort B study[J]. Eur Urol, 2022, 82(1): 22-30.
doi: 10.1016/j.eururo.2022.02.023 pmid: 35397952 |
[64] | CHI K N, RATHKOPF D, SMITH M R, et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2022. [Online ahead of print] |
[65] | FIZAZI K, RETZ M, PETRYLAK D P, et al. Nivolumab plus rucaparib for metastatic castration-resistant prostate cancer: results from the phase 2 CheckMate 9KD trial[J]. J Immunother Cancer, 2022, 10(8): e004761. |
[66] |
AGARWAL N, MCGREGOR B, MAUGHAN B L, et al. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021)[J]. Lancet Oncol, 2022, 23(7): 899-909.
doi: 10.1016/S1470-2045(22)00278-9 pmid: 35690072 |
[67] |
KIM J W, MCKAY R R, RADKE M R, et al. Randomized trial of olaparib with or without cediranib for metastatic castration-resistant prostate cancer: the results from national cancer institute 9984[J]. J Clin Oncol, 2023, 41(4): 871-880.
doi: 10.1200/JCO.21.02947 |
[68] |
NARAYAN V, BARBER-ROTENBERG J S, JUNG I Y, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial[J]. Nat Med, 2022, 28(4): 724-734.
doi: 10.1038/s41591-022-01726-1 |
[69] | LAKE B P M, WYLIE R G, BAŘINKA C, et al. Tunable multivalent platform for immune recruitment to lower antigen expressing cancers[J]. Angew Chem Int Ed Engl, 2023, 62(9): e202214659. |
[1] | 中国抗癌协会泌尿生殖肿瘤整合康复专业委员会. 根治性前列腺切除术围手术期整合康复中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(9): 890-902. |
[2] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[3] | 潘剑, 叶定伟, 朱耀, 王备合. 激素敏感性前列腺癌患者中PSMA PET/CT衍生参数与循环肿瘤DNA特征之间的相关性分析[J]. 中国癌症杂志, 2024, 34(7): 680-685. |
[4] | 中国抗癌协会肿瘤核医学专业委员会, 中国医师协会核医学医师分会. 177Lu-PSMA放射性配体疗法治疗前列腺癌的临床实践专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(7): 702-714. |
[5] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[6] | 上海市抗癌协会胃癌专业委员会, 中国人体健康科技促进会胃肠肿瘤专业委员会. 侵犯邻近脏器的进展期胃癌的临床诊疗中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(5): 517-526. |
[7] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[8] | 冯征, 郭勤浩, 朱俊, 吴小华, 温灏. 2023年度妇科恶性肿瘤治疗进展及展望[J]. 中国癌症杂志, 2024, 34(4): 340-360. |
[9] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[10] | 汪学非, 周鹏, 唐兆庆. 胃癌外科治疗的新进展及发展趋势[J]. 中国癌症杂志, 2024, 34(3): 250-258. |
[11] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[12] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[13] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[14] | 刘志昱, 徐栋, 陈西昊, 李纪鹏. 局部进展期直肠癌新辅助放化疗后肿瘤退缩的影响因素分析及预测模型构建[J]. 中国癌症杂志, 2024, 34(2): 191-200. |
[15] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn