中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (4): 315-326.doi: 10.19401/j.cnki.1007-3639.2023.04.002
收稿日期:
2023-02-15
修回日期:
2023-03-29
出版日期:
2023-04-30
发布日期:
2023-05-15
通信作者:
高强(ORCID: 0000-0002-6695-9906),博士,主任医师,复旦大学附属中山医院肝外科副主任。
作者简介:
赵海潮(ORCID: 0000-0001-8434-0392),博士,主治医师。基金资助:
Received:
2023-02-15
Revised:
2023-03-29
Published:
2023-04-30
Online:
2023-05-15
Contact:
GAO Qiang
文章分享
摘要:
肝癌是发病率和死亡率极高的消化系统恶性肿瘤。近年来,中国肝癌规范化诊疗水平不断提升。单细胞测序、空间组学测序和基于深度学习的人工智能等多种新技术应用使得肝癌基础研究领域不断取得突破,相关创新研究日新月异,对肝癌生物学特性更加全面系统的了解有益于带动产学研和临床疗效的一系列突破,成为提高肝癌治疗效果的关键。随着FOLFOX-HAIC、LEAP-002和KEYNOTE-301等多项大规模前瞻性临床研究结果的公布,为术后和一线治疗失败的肝癌提供了更多的可能。局部治疗和全身系统治疗方案的推陈出新,新的转化研究(TALENTop和IBI305)进一步将中晚期肝癌转化为外科可切除的肝癌,使更多的肝癌患者有机会得到救治。本文就2022年度肝癌领域的基础和临床研究进展予以综述。
中图分类号:
赵海潮, 高强. 2022年度肝癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 315-326.
ZHAO Haichao, GAO Qiang. Progress in research, diagnosis, and treatment of hepatocellular carcinoma in 2022[J]. China Oncology, 2023, 33(4): 315-326.
[1] |
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6.
doi: 10.1038/s41572-020-00240-3 pmid: 33479224 |
[2] |
MARQUARDT J U, ANDERSEN J B, THORGEIRSSON S S. Functional and genetic deconstruction of the cellular origin in liver cancer[J]. Nat Rev Cancer, 2015, 15(11): 653-667.
doi: 10.1038/nrc4017 pmid: 26493646 |
[3] |
CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
doi: 10.3322/caac.21338 |
[4] |
PEISELER M, SCHWABE R, HAMPE J, et al. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease-novel insights into cellular communication circuits[J]. J Hepatol, 2022, 77(4): 1136-1160.
doi: 10.1016/j.jhep.2022.06.012 |
[5] |
IOANNOU G N. Epidemiology and risk-stratification of NAFLD-associated HCC[J]. J Hepatol, 2021, 75(6): 1476-1484.
doi: 10.1016/j.jhep.2021.08.012 pmid: 34453963 |
[6] | CHEN W, WEN L, BAO Y Y, et al. Gut flora disequilibrium promotes the initiation of liver cancer by modulating tryptophan metabolism and up-regulating SREBP2[J]. Proc Natl Acad Sci U S A, 2022, 119(52): e2203894119. |
[7] |
YIP T C, WONG V W, LAI M S, et al. Risk of hepatic decompensation but not hepatocellular carcinoma decreases over time in patients with hepatitis B surface antigen loss[J]. J Hepatol, 2023, 78(3): 524-533.
doi: 10.1016/j.jhep.2022.11.020 |
[8] |
JOHNSON P, ZHOU Q, DAO D Y, et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 670-681.
doi: 10.1038/s41575-022-00620-y pmid: 35676420 |
[9] | GAO Q, ZENG Q, WANG Z J, et al. Circulating cell-free DNA for cancer early detection[J]. Innovation (Camb), 2022, 3(4): 100259. |
[10] |
YANG X R, LIU R, ZHOU J, et al. Discovery and clinical validation of cost-effective noninvasive early detection of hepatocellular carcinoma (HCC) through circulating tumor DNA (ctDNA) methylation signature[J]. J Clin Oncol, 2022, 40(16_suppl): 4103.
doi: 10.1200/JCO.2022.40.16_suppl.4103 |
[11] |
CHEN L, ABOU-ALFA G K, ZHENG B, et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients[J]. Cell Res, 2021, 31(5): 589-592.
doi: 10.1038/s41422-020-00457-7 pmid: 33589745 |
[12] |
FODA Z H, ANNAPRAGADA A V, BOYAPATI K, et al. Detecting liver cancer using cell-free DNA fragmentomes[J]. Cancer Discov, 2023, 13(3): 616-631.
doi: 10.1158/2159-8290.CD-22-0659 |
[13] |
ZHANG X Y, WANG Z, TANG W, et al. Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics[J]. Hepatology, 2022, 76(2): 317-329.
doi: 10.1002/hep.32308 |
[14] |
QU C F, WANG Y T, WANG P, et al. Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy[J]. Proc Natl Acad Sci U S A, 2019, 116(13): 6308-6312.
doi: 10.1073/pnas.1819799116 |
[15] |
CAI J B, CHEN L, ZHANG Z, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma[J]. Gut, 2019, 68(12): 2195-2205.
doi: 10.1136/gutjnl-2019-318882 pmid: 31358576 |
[16] |
FUJIWARA N, KUBOTA N, CROUCHET E, et al. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease[J]. Sci Transl Med, 2022, 14(650): eabo4474.
doi: 10.1126/scitranslmed.abo4474 |
[17] |
ANDERSON N M, SIMON M C. The tumor microenvironment[J]. Curr Biol, 2020, 30(16): R921-R925.
doi: 10.1016/j.cub.2020.06.081 |
[18] |
XUE R D, ZHANG Q M, CAO Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity[J]. Nature, 2022, 612(7938): 141-147.
doi: 10.1038/s41586-022-05400-x |
[19] | CHEN S L, HUANG C, LIAO G R, et al. Distinct single-cell immune ecosystems distinguish true and de novo HBV-related hepatocellular carcinoma recurrences[J]. Gut, 2023: gutjnl-gu2022-328428[ Online ahead of print]. |
[20] |
LU Y M, YANG A Q, QUAN C, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1): 4594.
doi: 10.1038/s41467-022-32283-3 pmid: 35933472 |
[21] |
GUO L, YI X F, CHEN L, et al. Single-cell DNA sequencing reveals punctuated and gradual clonal evolution in hepatocellular carcinoma[J]. Gastroenterology, 2022, 162(1): 238-252.
doi: 10.1053/j.gastro.2021.08.052 |
[22] |
BURGESS D J. Spatial transcriptomics coming of age[J]. Nat Rev Genet, 2019, 20(6): 317.
doi: 10.1038/s41576-019-0129-z pmid: 30980030 |
[23] |
WU Y C, CHENG Y F, WANG X D, et al. Spatial omics: navigating to the golden era of cancer research[J]. Clin Transl Med, 2022, 12(1): e696.
doi: 10.1002/ctm2.696 pmid: 35040595 |
[24] |
WU R, GUO W B, QIU X Y, et al. Comprehensive analysis of spatial architecture in primary liver cancer[J]. Sci Adv, 2021, 7(51): eabg3750.
doi: 10.1126/sciadv.abg3750 |
[25] |
LIU Y, XUN Z Z, MA K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy[J]. J Hepatol, 2023, 78(4): 770-782.
doi: 10.1016/j.jhep.2023.01.011 |
[26] | LI Q, NI Y, ZHANG L R, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation[J]. Signal Transduct Target Ther, 2021, 6(1): 76. |
[27] |
XU W, ZHAO Z Y, AN Q M, et al. Comprehensive comparison of patient-derived xenograft models in Hepatocellular Carcinoma and metastatic Liver Cancer[J]. Int J Med Sci, 2020, 17(18): 3073-3081.
doi: 10.7150/ijms.46686 pmid: 33173428 |
[28] |
QUINN J J, JONES M G, OKIMOTO R A, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts[J]. Science, 2021, 371(6532): eabc1944.
doi: 10.1126/science.abc1944 |
[29] | ZHOU L, YU K H, WONG T L, et al. Lineage tracing and single-cell analysis reveal proliferative Prom1 + tumour-propagating cells and their dynamic cellular transition during liver cancer progression[J]. Gut, 2022, 71(8): 1656-1668. |
[30] |
YANG D, JONES M G, NARANJO S, et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution[J]. Cell, 2022, 185(11): 1905-1923.e25.
doi: 10.1016/j.cell.2022.04.015 pmid: 35523183 |
[31] |
HE L J, PU W J, LIU X X, et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair[J]. Science, 2021, 371(6532): eabc4346.
doi: 10.1126/science.abc4346 |
[32] |
SUN Y F, WU L, ZHONG Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma[J]. Cell, 2021, 184(2): 404-421.e16.
doi: 10.1016/j.cell.2020.11.041 pmid: 33357445 |
[33] |
AGHAYEV T, MAZITOVA A M, FANG J R, et al. IL27 signaling serves as an immunologic checkpoint for innate cytotoxic cells to promote hepatocellular carcinoma[J]. Cancer Discov, 2022, 12(8): 1960-1983.
doi: 10.1158/2159-8290.CD-20-1628 |
[34] |
WONG A M, DING X F, WONG A M, et al. Unique molecular characteristics of NAFLD-associated liver cancer accentuate β-catenin/TNFRSF19-mediated immune evasion[J]. J Hepatol, 2022, 77(2): 410-423.
doi: 10.1016/j.jhep.2022.03.015 |
[35] |
WEI C Y, ZHU M X, ZHANG P F, et al. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma[J]. J Hepatol, 2022, 77(1): 163-176.
doi: 10.1016/j.jhep.2022.02.019 |
[36] |
LIU Q X, LI J X, ZHANG W J, et al. Glycogen accumulation and phase separation drives liver tumor initiation[J]. Cell, 2021, 184(22): 5559-5576.e19.
doi: 10.1016/j.cell.2021.10.001 pmid: 34678143 |
[37] |
HU B, YU M C, MA X L, et al. IFNα potentiates anti-PD-1 efficacy by remodeling glucose metabolism in the hepatocellular carcinoma microenvironment[J]. Cancer Discov, 2022, 12(7): 1718-1741.
doi: 10.1158/2159-8290.CD-21-1022 |
[38] |
NING Z, GUO X, LIU X L, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1): 2187.
doi: 10.1038/s41467-022-29846-9 pmid: 35449157 |
[39] |
BERARDI D E, BOCK-HUGHES A, TERRY A R, et al. Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner[J]. Sci Adv, 2022, 8(41): eabo2510.
doi: 10.1126/sciadv.abo2510 |
[40] |
SUN R Q, ZHANG Z Y, BAO R X, et al. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis[J]. J Hepatol, 2022, 77(2): 453-466.
doi: 10.1016/j.jhep.2022.02.030 pmid: 35292350 |
[41] |
LIU F Z, TIAN T, ZHANG Z, et al. Long non-coding RNA SNHG6 couples cholesterol sensing with mTORC1 activation in hepatocellular carcinoma[J]. Nat Metab, 2022, 4(8): 1022-1040.
doi: 10.1038/s42255-022-00616-7 pmid: 35995997 |
[42] | XU J J, JI L, RUAN Y L, et al. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2021, 6(1): 190. |
[43] |
GAO C, WANG S W, LU J C, et al. KSR2-14-3-3ζ complex serves as a biomarker and potential therapeutic target in sorafenib-resistant hepatocellular carcinoma[J]. Biomark Res, 2022, 10(1): 25.
doi: 10.1186/s40364-022-00361-9 pmid: 35468812 |
[44] |
JIN H J, SHI Y P, LV Y Y, et al. EGFR activation limits the response of liver cancer to lenvatinib[J]. Nature, 2021, 595(7869): 730-734.
doi: 10.1038/s41586-021-03741-7 |
[45] |
HU B Y, ZOU T T, QIN W, et al. Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(20): 3845-3857.
doi: 10.1158/0008-5472.CAN-21-4140 pmid: 36066408 |
[46] |
PAN J M, ZHANG M, DONG L Q, et al. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma[J]. Autophagy, 2023, 19(4): 1184-1198.
doi: 10.1080/15548627.2022.2117893 |
[47] | MOK E H K, LEUNG C O N, ZHOU L, et al. Caspase-3-induced activation of SREBP2 drives drug resistance via promotion of cholesterol biosynthesis in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(17): 3102-3115. |
[48] |
CALDERARO J, SERAPHIN T P, LUEDDE T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma[J]. J Hepatol, 2022, 76(6): 1348-1361.
doi: 10.1016/j.jhep.2022.01.014 pmid: 35589255 |
[49] |
LIU B E, ZENG Q Y, HUANG J B, et al. IVIM using convolutional neural networks predicts microvascular invasion in HCC[J]. Eur Radiol, 2022, 32(10): 7185-7195.
doi: 10.1007/s00330-022-08927-9 |
[50] |
GAO R T, ZHAO S, AISHANJIANG K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154.
doi: 10.1186/s13045-021-01167-2 |
[51] |
SHI J Y, WANG X D, DING G Y, et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning[J]. Gut, 2021, 70(5): 951-961.
doi: 10.1136/gutjnl-2020-320930 |
[52] |
REIG M, FORNER A, RIMOLA J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update[J]. J Hepatol, 2022, 76(3): 681-693.
doi: 10.1016/j.jhep.2021.11.018 |
[53] | 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华肝脏病杂志, 2022(4): 367-388. |
Medical Administration Bureau of the National Health Commission of the People's Republic of China. Standardization for diagnosis and treatment of hepatocellular carcinoma (2022 edition)[J]. Chin J Hepatol, 2022(4): 367-388. | |
[54] |
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362.
doi: 10.1016/S0140-6736(22)01200-4 pmid: 36084663 |
[55] |
DI BENEDETTO F, MAGISTRI P, DI SANDRO S, et al. Safety and efficacy of robotic vs open liver resection for hepatocellular carcinoma[J]. JAMA Surg, 2023, 158(1): 46-54.
doi: 10.1001/jamasurg.2022.5697 |
[56] |
ZHU P, LIAO W, ZHANG W G, et al. A prospective study using propensity score matching to compare long-term survival outcomes after robotic-assisted, laparoscopic, or open liver resection for patients with BCLC stage 0-a hepatocellular carcinoma[J]. Ann Surg, 2023, 277(1): e103-e111.
doi: 10.1097/SLA.0000000000005380 |
[57] | 陈昭硕, 林科灿, 刘景丰. 三维可视化技术在原发性肝癌外科手术中的应用[J]. 临床肝胆病杂志, 2022, 38(3): 505-509. |
CHEN Z S, LIN K C, LIU J F. Application of three-dimensional visualization in surgical operation for primary liver cancer[J]. J Clin Hepatol, 2022, 38(3): 505-509. | |
[58] |
TABRIZIAN P, HOLZNER M L, MEHTA N, et al. Ten-year outcomes of liver transplant and downstaging for hepatocellular carcinoma[J]. JAMA Surg, 2022, 157(9): 779-788.
doi: 10.1001/jamasurg.2022.2800 pmid: 35857294 |
[59] |
FAMULARO S, DONADON M, CIPRIANI F, et al. Hepatectomy versus sorafenib in advanced nonmetastatic hepatocellular carcinoma: a real-life multicentric weighted comparison[J]. Ann Surg, 2022, 275(4): 743-752.
doi: 10.1097/SLA.0000000000005373 pmid: 35081572 |
[60] | PENG Z W, FAN W Z, ZHU B W, et al. Lenvatinib combined with transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma: a phase Ⅲ, randomized clinical trial (LAUNCH)[J]. J Clin Oncol, 2023, 41(1): 117-127. |
[61] | LI Q J, HE M K, CHEN H W, et al. Hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin versus transarterial chemoembolization for large hepatocellular carcinoma: a randomized phase Ⅲ trial[J]. J Clin Oncol, 2022, 40(2): 150-160. |
[62] |
WANG Z, LIU M, ZHANG D Z, et al. Microwave ablation versus laparoscopic resection as first-line therapy for solitary 3-5-cm HCC[J]. Hepatology, 2022, 76(1): 66-77.
doi: 10.1002/hep.32323 |
[63] |
LIU K W, ZHENG H, SUI X Z, et al. Microwave ablation versus surgical resection for subcapsular hepatocellular carcinoma: a propensity score-matched study of long-term therapeutic outcomes[J]. Eur Radiol, 2023, 33(3): 1938-1948.
doi: 10.1007/s00330-022-09135-1 |
[64] |
YU J, CHENG Z G, HAN Z Y, et al. Period-dependent survival benefit of percutaneous microwave ablation for hepatocellular carcinoma: a 12-year real-world, multicentric experience[J]. Liver Cancer, 2022, 11(4): 341-353.
doi: 10.1159/000522134 pmid: 35978603 |
[65] |
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571.
doi: 10.1097/SLA.0000000000003268 |
[66] |
XIA Y, LI J, LIU G H, et al. Long-term effects of repeat hepatectomy vs percutaneous radiofrequency ablation among patients with recurrent hepatocellular carcinoma: a randomized clinical trial[J]. JAMA Oncol, 2020, 6(2): 255-263.
doi: 10.1001/jamaoncol.2019.4477 |
[67] |
CHEN S L, ZENG X Z, SU T H, et al. Combinatory local ablation and immunotherapies for hepatocellular carcinoma: rationale, efficacy, and perspective[J]. Front Immunol, 2022, 13: 1033000.
doi: 10.3389/fimmu.2022.1033000 |
[68] |
CHEN B, WU J X, CHENG S H, et al. Phase 2 study of adjuvant radiotherapy following narrow-margin hepatectomy in patients with HCC[J]. Hepatology, 2021, 74(5): 2595-2604.
doi: 10.1002/hep.31993 |
[69] |
SU K, GU T, XU K, et al. Gamma knife radiosurgery versus transcatheter arterial chemoembolization for hepatocellular carcinoma with portal vein tumor thrombus: a propensity score matching study[J]. Hepatol Int, 2022, 16(4): 858-867.
doi: 10.1007/s12072-022-10339-2 |
[70] |
DAWSON L A, WINTER K, KNOX J, et al. NRG/RTOG 1112: randomized phase Ⅲ study of sorafenib vs stereotactic body radiation therapy (SBRT) followed by sorafenib in hepatocellular carcinoma (HCC) (NCT01730937)[J]. Int J Radiat Oncol Biol Physics, 2022, 114(5): 1057.
doi: 10.1016/j.ijrobp.2022.09.002 |
[71] |
SUN Y K, ZHANG W, BI X Y, et al. Systemic therapy for hepatocellular carcinoma: Chinese consensus-based interdisciplinary expert statements[J]. Liver Cancer, 2022, 11(3): 192-208.
doi: 10.1159/000521596 pmid: 35949289 |
[72] | FINN R S. LBA34-primary results from the phase Ⅲ LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC)[C]. ESMO Congress, 2022: S808-S869. |
[73] | QIN S, CHAN L S, GU S, et al. LBA35 Camrelizumab (C) plus rivoceranib (R) vs sorafenib (S) as first-line therapy for unresectable hepatocellular carcinoma (uHCC): a randomized, phase Ⅲtrial[J]. Ann Oncol, 2022, 33: S1401-S1402. |
[74] |
QIN S K, CHEN Z D, FANG W J, et al. Pembrolizumab versus placebo as second-line therapy in patients from Asia with advanced hepatocellular carcinoma: a randomized, double-blind, phase Ⅲtrial[J]. J Clin Oncol, 2023, 41(7): 1434-1443.
doi: 10.1200/JCO.22.00620 |
[75] |
SHAO G L, BAI Y X, YUAN X L, et al. Ramucirumab as second-line treatment in Chinese patients with advanced hepatocellular carcinoma and elevated alpha-fetoprotein after sorafenib (REACH-2 China): a randomised, multicentre, double-blind study[J]. EClinicalMedicine, 2022, 54: 101679.
doi: 10.1016/j.eclinm.2022.101679 |
[76] |
KUDO M. Durvalumab plus tremelimumab in unresectable hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(4): 592-596.
doi: 10.21037/hbsn |
[77] |
XING B, DA X, ZHANG Y, et al. A phase Ⅱ study combining KN046 (an anti-PD-L1/CTLA-4 bispecific antibody) and lenvatinib in the treatment for advanced unresectable or metastatic hepatocellular carcinoma (HCC): updated efficacy and safety results[J]. JCO, 2022, 40(16_suppl): 4115.
doi: 10.1200/JCO.2022.40.16_suppl.4115 |
[78] |
SUN H C, ZHOU J, WANG Z, et al. Chinese expert consensus on conversion therapy for hepatocellular carcinoma (2021 edition)[J]. Hepatobiliary Surg Nutr, 2022, 11(2): 227-252.
doi: 10.21037/hbsn |
[79] | SUN H, ZHU X, GAO Q, et al. Sintilimab combined with bevacizumab biosimilar as a conversion therapy in potentially resectable intermediate stage hepatocellular carcinoma (HCC): a phase Ⅱ trial[J]. Ann Oncol, 2022, 33: S867-S868. |
[80] |
SUN H C, SHEN F, LIU L X, et al. TALENTop: a multicenter, randomized study evaluating the efficacy and safety of hepatic resection for selected hepatocellular carcinoma with macrovascular invasion after initial atezolizumab plus bevacizumab treatment[J]. J Clin Oncol, 2022, 40(16_suppl): TPS4175.
doi: 10.1200/JCO.2022.40.16_suppl.TPS4175 |
[81] | SUN H, SHEN F, BAI X, et al. Safety of liver resection following atezolizumab plus bevacizumab treatment in hepatocellular carcinoma (HCC) patients with macrovascular invasion: a pre-specified analysis of the TALENTop study[J]. Ann Oncol, 2022, 33(1_suppl): 1470. |
[82] | LIU D. Hepatic artery infusion chemotherapy (HAIC) combined with sintilimab and bevacizumab biosimilar (IBI305) for initial unresectable hepatocellular carcinoma (HCC): a prospective, single-arm phase Ⅱ trial[C]. 2022 ASCO Annual Meeting I. American Society of Clinical Oncology (ASCO). 2022. |
[83] | FENG X B, ZHANG L, NIU H M, et al. Selective internal radiation therapy with yttrium-90 resin microspheres followed by anatomical hepatectomy: a potential curative strategy in advanced hepatocellular carcinoma[J]. Asia Pac J Clin Oncol, 2023 [ Online ahead of print]. |
[84] |
CAI Z X, SU X P, QIU L M, et al. Personalized neoantigen vaccine prevents postoperative recurrence in hepatocellular carcinoma patients with vascular invasion[J]. Mol Cancer, 2021, 20(1): 164.
doi: 10.1186/s12943-021-01467-8 pmid: 34903219 |
[85] |
PENG S, CHEN S L, HU W, et al. Combination neoantigen-based dendritic cell vaccination and adoptive T-cell transfer induces antitumor responses against recurrence of hepatocellular carcinoma[J]. Cancer Immunol Res, 2022, 10(6): 728-744.
doi: 10.1158/2326-6066.CIR-21-0931 |
[86] |
LLOVET J M, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616.
doi: 10.1038/s41571-018-0073-4 pmid: 30061739 |
[87] |
ZHU A X, FINN R S, EDELINE J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial[J]. Lancet Oncol, 2018, 19(7): 940-952.
doi: S1470-2045(18)30351-6 pmid: 29875066 |
[88] |
SHI J W, LIU J W, TU X X, et al. Single-cell immune signature for detecting early-stage HCC and early assessing anti-PD-1 immunotherapy efficacy[J]. J Immunother Cancer, 2022, 10(1): e003133.
doi: 10.1136/jitc-2021-003133 |
[89] |
PINATO D J, MARRON T U, MISHRA-KALYANI P S, et al. Treatment-related toxicity and improved outcome from immunotherapy in hepatocellular cancer: evidence from an FDA pooled analysis of landmark clinical trials with validation from routine practice[J]. Eur J Cancer, 2021, 157: 140-152.
doi: 10.1016/j.ejca.2021.08.020 pmid: 34508996 |
[90] |
WANG J, HUANG A, WANG Y P, et al. Circulating tumor DNA correlates with microvascular invasion and predicts tumor recurrence of hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(5): 237.
doi: 10.21037/atm.2019.12.154 pmid: 32309384 |
[91] |
SUN Y F, WU L, LIU S P, et al. Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma[J]. Nat Commun, 2021, 12(1): 4091.
doi: 10.1038/s41467-021-24386-0 |
[92] |
RICCIUTI B, WANG X N, ALESSI J V, et al. Association of high tumor mutation burden in non-small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels[J]. JAMA Oncol, 2022, 8(8): 1160-1168.
doi: 10.1001/jamaoncol.2022.1981 pmid: 35708671 |
[93] |
LIN Z F, QIN L X, CHEN J H. Biomarkers for response to immunotherapy in hepatobiliary malignancies[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(5): 413-419.
doi: 10.1016/j.hbpd.2022.08.002 |
[94] |
LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2019, 381(16): 1535-1546.
doi: 10.1056/NEJMoa1910836 |
[1] | 温自强, 兰军良, 周博, 许其威. PARP1通过调控POU2F2的表达促进肝细胞癌的进展研究[J]. 中国癌症杂志, 2024, 34(9): 848-856. |
[2] | 肖锋, 许桐林, 朱琳, 肖静文, 吴天祺, 顾春燕. M1型肿瘤相关巨噬细胞在肝细胞癌组织中浸润的意义[J]. 中国癌症杂志, 2024, 34(8): 726-733. |
[3] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[4] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[5] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[6] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[7] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
[8] | 渠宁, 王钰婷, 马奔, 王宇. 2022年度甲状腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(5): 423-430. |
[9] | 蒋金玲, 周尘飞, 王超, 赵丽琴, 吴珺玮, 张俊. 2022年度胃癌研究和诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 303-314. |
[10] | 田熙, 徐文浩, 朱殊璇, 艾合太木江·安外尔, 宿佳琦, 叶世琪, 瞿元元, 施国海, 张海梁, 叶定伟. 2022年度肾细胞癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 191-200. |
[11] | 郑盛锋, 朱一平, 叶定伟. 2022年度膀胱癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 201-209. |
[12] | 潘剑, 朱耀, 戴波, 叶定伟. 2022年度前列腺癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 210-217. |
[13] | 曾铖, 张剑. 2022年度ADC在胰腺癌领域的研究新进展及展望[J]. 中国癌症杂志, 2023, 33(3): 235-240. |
[14] | 张会强, 江泽飞. 2022年改变晚期乳腺癌临床实践的重要研究[J]. 中国癌症杂志, 2023, 33(2): 110-116. |
[15] | 王旭, 程合, 刘辰, 虞先濬. 2022年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(1): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn