[1] |
SLAMON D J, CLARK G M, WONG S G, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987, 235(4785): 177-182.
doi: 10.1126/science.3798106
pmid: 3798106
|
[2] |
SWAIN S M, SHASTRY M, HAMILTON E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126.
doi: 10.1038/s41573-022-00579-0
|
[3] |
SLAMON D J, LEYLAND-JONES B, SHAK S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2[J]. N Engl J Med, 2001, 344(11): 783-792.
doi: 10.1056/NEJM200103153441101
|
[4] |
VOGEL C L, COBLEIGH M A, TRIPATHY D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer[J]. J Clin Oncol, 2002, 20(3): 719-726.
doi: 10.1200/JCO.2002.20.3.719
pmid: 11821453
|
[5] |
GENNARI R, MENARD S, FAGNONI F, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2[J]. Clin Cancer Res, 2004, 10(17): 5650-5655.
doi: 10.1158/1078-0432.CCR-04-0225
pmid: 15355889
|
[6] |
BUSSOLATI G, MONTEMURRO F, RIGHI L, et al. A modified trastuzumab antibody for the immunohistochemical detection of HER-2 overexpression in breast cancer[J]. Br J Cancer, 2005, 92(7): 1261-1267.
doi: 10.1038/sj.bjc.6602507
|
[7] |
DIERMEIER S, HORVÁTH G, KNUECHEL-CLARKE R, et al. Epidermal growth factor receptor coexpression modulates susceptibility to herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation[J]. Exp Cell Res, 2005, 304(2): 604-619.
doi: 10.1016/j.yexcr.2004.12.008
pmid: 15748904
|
[8] |
LU Y, ZI X, ZHAO Y, et al. Insulin-like growth factor-Ⅰ receptor signaling and resistance to trastuzumab (Herceptin)[J]. J Natl Cancer Inst, 2001, 93(24): 1852-1857.
doi: 10.1093/jnci/93.24.1852
|
[9] |
NAGATA Y, LAN K H, ZHOU X Y, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients[J]. Cancer Cell, 2004, 6(2): 117-127.
doi: 10.1016/j.ccr.2004.06.022
pmid: 15324695
|
[10] |
LOI S, GIOBBIE-HURDER A, GOMBOS A, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial[J]. Lancet Oncol, 2019, 20(3): 371-382.
doi: S1470-2045(18)30812-X
pmid: 30765258
|
[11] |
STAGG J, LOI S, DIVISEKERA U, et al. Anti-ErbB-2 MAb therapy requires type Ⅰ and Ⅱ interferons and synergizes with anti-PD-1 or anti-CD137 MAb therapy[J]. Proc Natl Acad Sci U S A, 2011, 108(17): 7142-7147.
doi: 10.1073/pnas.1016569108
|
[12] |
BASELGA J, BRADBURY I, EIDTMANN H, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet, 2012, 379(9816): 633-640.
doi: 10.1016/S0140-6736(11)61847-3
pmid: 22257673
|
[13] |
CAREY L A, BERRY D A, CIRRINCIONE C T, et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase Ⅲ trial of paclitaxel plus trastuzumab with or without lapatinib[J]. J Clin Oncol, 2016, 34(6): 542-549.
|
[14] |
GIANNI L, PIENKOWSKI T, IM Y H, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial[J]. Lancet Oncol, 2012, 13(1): 25-32.
doi: 10.1016/S1470-2045(11)70336-9
pmid: 22153890
|
[15] |
SCHNEEWEISS A, CHIA S, HICKISH T, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase Ⅱ cardiac safety study (TRYPHAENA)[J]. Ann Oncol, 2013, 24(9): 2278-2284.
doi: 10.1093/annonc/mdt182
|
[16] |
GIORDANO S H, FRANZOI M A B, TEMIN S, et al. Systemic therapy for advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO guideline update[J]. J Clin Oncol, 2022, 40(23): 2612-2635.
|
[17] |
FU Z W, LI S J, HAN S F, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93.
|
[18] |
TORRES E T R, EMENS L A. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies[J]. Breast Cancer Res Treat, 2022, 191(2): 291-302.
doi: 10.1007/s10549-021-06423-0
|
[19] |
FERNANDEZ-MARTINEZ A, PASCUAL T, SINGH B, et al. Prognostic and predictive value of immune-related gene expression signatures vs tumor-infiltrating lymphocytes in early-stage ERBB2/HER2-positive breast cancer: a correlative analysis of the CALGB 40601 and PAMELA trials[J]. JAMA Oncol, 2023, 9(4): 490-499.
doi: 10.1001/jamaoncol.2022.6288
|
[20] |
SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723.
doi: S0092-8674(17)30065-X
pmid: 28187290
|
[21] |
KALAORA S, NAGLER A, WARGO J A, et al. Mechanisms of immune activation and regulation: lessons from melanoma[J]. Nat Rev Cancer, 2022, 22(4): 195-207.
doi: 10.1038/s41568-022-00442-9
pmid: 35105962
|
[22] |
LABRIE M, BRUGGE J S, MILLS G B, et al. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer[J]. Nat Rev Cancer, 2022, 22(6): 323-339.
doi: 10.1038/s41568-022-00454-5
pmid: 35264777
|
[23] |
COOLEY S, BURNS L J, REPKA T, et al. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu[J]. Exp Hematol, 1999, 27(10): 1533-1541.
doi: 10.1016/s0301-472x(99)00089-2
pmid: 10517495
|
[24] |
LEWIS G D, FIGARI I, FENDLY B, et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies[J]. Cancer Immunol Immunother, 1993, 37(4): 255-263.
doi: 10.1007/BF01518520
|
[25] |
KOHRT H E, HOUOT R, MARABELLE A, et al. Combination strategies to enhance antitumor ADCC[J]. Immunotherapy, 2012, 4(5): 511-527.
doi: 10.2217/imt.12.38
pmid: 22642334
|
[26] |
CLYNES R A, TOWERS T L, PRESTA L G, et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets[J]. Nat Med, 2000, 6(4): 443-446.
doi: 10.1038/74704
|
[27] |
SALGADO R, DENKERT C, CAMPBELL C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial[J]. JAMA Oncol, 2015, 1(4): 448-454.
doi: 10.1001/jamaoncol.2015.0830
pmid: 26181252
|
[28] |
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172.
doi: 10.1016/S0140-6736(13)62422-8
pmid: 24529560
|
[29] |
INGOLD HEPPNER B, UNTCH M, DENKERT C, et al. Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer[J]. Clin Cancer Res, 2016, 22(23): 5747-5754.
pmid: 27189162
|
[30] |
CHIC N, LUEN S J, NUCIFORO P, et al. Tumor cellularity and infiltrating lymphocytes as a survival surrogate in HER2-positive breast cancer[J]. J Natl Cancer Inst, 2022, 114(3): 467-470.
doi: 10.1093/jnci/djab057
|
[31] |
DENKERT C, VON MINCKWITZ G, BRASE J C, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers[J]. J Clin Oncol, 2015, 33(9): 983-991.
doi: 10.1200/JCO.2014.58.1967
pmid: 25534375
|
[32] |
RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
|
[33] |
CHALMERS Z R, CONNELLY C F, FABRIZIO D, et al. Analysis of 100 000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017, 9(1): 34.
doi: 10.1186/s13073-017-0424-2
|
[34] |
NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5): 453-457.
doi: 10.1038/nmeth.3337
pmid: 25822800
|
[35] |
THORSSON V, GIBBS D L, BROWN S D, et al. The immune landscape of cancer[J]. Immunity, 2018, 48(4): 812-830.e14.
doi: S1074-7613(18)30121-3
pmid: 29628290
|
[36] |
LAUSS M, DONIA M, HARBST K, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma[J]. Nat Commun, 2017, 8(1): 1738.
doi: 10.1038/s41467-017-01460-0
pmid: 29170503
|
[37] |
JIANG P, GU S Q, PAN D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558.
doi: 10.1038/s41591-018-0136-1
pmid: 30127393
|
[38] |
SCHOENFELD A J, RIZVI H, BANDLAMUDI C, et al. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas[J]. Ann Oncol, 2020, 31(5): 599-608.
doi: S0923-7534(20)36018-X
pmid: 32178965
|
[39] |
JENSEN J D, KNOOP A, LAENKHOLM A V, et al. PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab[J]. Ann Oncol, 2012, 23(8): 2034-2042.
doi: S0923-7534(19)38088-3
pmid: 32018458
|
[40] |
VIGANO S, ALATZOGLOU D, IRVING M, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function[J]. Front Immunol, 2019, 10: 925.
doi: 10.3389/fimmu.2019.00925
pmid: 31244820
|
[41] |
YAMAMOTO K, VENIDA A, YANO J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I[J]. Nature, 2020, 581(7806): 100-105.
doi: 10.1038/s41586-020-2229-5
|
[42] |
PRAT A, GUARNERI V, PASCUAL T, et al. Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer[J]. EBioMedicine, 2022, 75: 103801.
doi: 10.1016/j.ebiom.2021.103801
|
[43] |
FERNANDEZ-MARTINEZ A, KROP I E, HILLMAN D W, et al. Survival, pathologic response, and genomics in CALGB 40601 (alliance), a neoadjuvant phase Ⅲ trial of paclitaxel-trastuzumab with or without lapatinib in HER2-positive breast cancer[J]. J Clin Oncol, 2020, 38(35): 4184-4193.
doi: 10.1200/JCO.20.01276
|
[44] |
WONG H, LEUNG R, KWONG A, et al. Integrating molecular mechanisms and clinical evidence in the management of trastuzumab resistant or refractory HER-2+ metastatic breast cancer[J]. Oncologist, 2011, 16(11): 1535-1546.
doi: 10.1634/theoncologist.2011-0165
|
[45] |
MITTAL D, CARAMIA F, MICHIELS S, et al. Improved treatment of breast cancer with anti-HER2 therapy requires interleukin-21 signaling in CD8+ T cells[J]. Cancer Res, 2016, 76(2): 264-274.
doi: 10.1158/0008-5472.CAN-15-1567
pmid: 26744522
|
[46] |
KILLOCK D. Targeted therapy: leveraging ADCC to enhance anti-HER2 therapy[J]. Nat Rev Clin Oncol, 2017, 14(4): 200.
doi: 10.1038/nrclinonc.2017.19
pmid: 28195234
|
[47] |
ROSENBERG S A, YANG J C, SHERRY R M, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13): 4550-4557.
doi: 10.1158/1078-0432.CCR-11-0116
pmid: 21498393
|
[48] |
VESELY M D, KERSHAW M H, SCHREIBER R D, et al. Natural innate and adaptive immunity to cancer[J]. Annu Rev Immunol, 2011, 29: 235-271.
doi: 10.1146/annurev-immunol-031210-101324
pmid: 21219185
|