中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (5): 517-526.doi: 10.19401/j.cnki.1007-3639.2023.05.012
收稿日期:
2022-06-21
修回日期:
2022-09-05
出版日期:
2023-05-30
发布日期:
2023-06-16
通信作者:
苏春霞(ORCID: 0000-0003-1632-9487),博士,主任医师、教授。
作者简介:
吴晶(ORCID: 0000-0003-2151-3801),硕士在读。
基金资助:
WU Jing(), ZHOU Juan, SU Chunxia()
Received:
2022-06-21
Revised:
2022-09-05
Published:
2023-05-30
Online:
2023-06-16
Contact:
SU Chunxia
摘要:
肺癌是最常见的恶性肿瘤,也是癌症死亡的主要原因。尽管靶向治疗和免疫治疗的发展显著改善了肺癌患者的疗效和预后,但总体5年生存率仍不到20%。因此,深入探索肺癌的发生、发展机制对于确立新的诊疗策略,进一步提高患者生存率具有重要的临床意义。代谢重编程是肿瘤维持恶性生物学行为的重要方式,既往研究表明,脂肪酸代谢重编程在肺癌的发生、发展过程中发挥重要作用,提示靶向肺癌脂肪酸代谢可能是新型抗肿瘤方案研发的重要方向。本文聚焦肺癌脂肪酸代谢重编程,拟从参与脂肪酸代谢包括摄取、合成、储存和分解等各环节的关键蛋白分子出发,综述脂肪酸代谢变化与肺癌发生、发展的关系,并对靶向脂肪酸代谢抗肿瘤治疗的应用现状及面临的挑战进行探讨,以期为确立新的肺癌治疗策略提供线索和参考。
中图分类号:
吴晶, 周娟, 苏春霞. 肺癌脂肪酸代谢重编程的研究进展[J]. 中国癌症杂志, 2023, 33(5): 517-526.
WU Jing, ZHOU Juan, SU Chunxia. Advances in fatty acid metabolism reprogramming of lung cancer[J]. China Oncology, 2023, 33(5): 517-526.
表1
靶向脂肪酸合成相关酶的抑制剂在肺癌中的研究进展"
Target | Agent | Mechanism of action | Drug development stage |
---|---|---|---|
ACC | ND-646 | ACC inhibitor binding to the BC domain of ACC[ | Preclinical |
FASN | Cerulenin | Non-competitive FASN inhibitor[ | Preclinical |
FASN | Orlistat | Irreversible FASN inhibitor; Induction of ferroptosis in lung cancer cells[ | Preclinical |
FASN | C75 | Cytotoxicity; Side effects of anorexia and weight loss[ | Preclinical |
FASN | TVB-3166 | Reversible FASN inhibitor; Inhibition of β-catenin signaling and induction of apoptosis[ | Preclinical |
FASN | TVB-2640 | Reversible FASN inhibitor[ | Phase Ⅱ Clinical Trial (NCT03808558) |
ACLY | SB-204990 | Specific ACLY inhibitor; Inhibition of proliferation in lung tumor growth[ | Preclinical |
SCD1 | MF-438 | Specific SCD1 inhibitor; Induction of apoptosis in lung adenocarcinoma stem cells[ | Preclinical |
[1] |
THAI A A, SOLOMON B J, SEQUIST L V, et al. Lung cancer[J]. Lancet, 2021, 398(10299): 535-554.
doi: 10.1016/S0140-6736(21)00312-3 pmid: 34273294 |
[2] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
doi: 10.3322/caac.v72.1 |
[3] |
CONWAY E M, PIKOR L A, KUNG S H Y, et al. Macrophages, inflammation, and lung cancer[J]. Am J Respir Crit Care Med, 2016, 193(2): 116-130.
doi: 10.1164/rccm.201508-1545CI |
[4] |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013 pmid: 21376230 |
[5] |
WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
doi: 10.1126/science.123.3191.309 pmid: 13298683 |
[6] |
KUMAGAI S, KOYAMA S, ITAHASHI K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell, 2022, 40(2): 201-218.e9.
doi: 10.1016/j.ccell.2022.01.001 |
[7] | ALI A, LEVANTINI E, TEO J T, et al. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer[J]. EMBO Mol Med, 2018, 10(3): e8313. |
[8] | CONTAT C, ANCEY P B, ZANGGER N, et al. Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth[J]. Elife, 2020, 9: e53618. |
[9] |
BROADFIELD L A, PANE A A, TALEBI A, et al. Lipid metabolism in cancer: new perspectives and emerging mechanisms[J]. Dev Cell, 2021, 56(10): 1363-1393.
doi: 10.1016/j.devcel.2021.04.013 pmid: 33945792 |
[10] |
SNAEBJORNSSON M T, JANAKI-RAMAN S, SCHULZE A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer[J]. Cell Metab, 2020, 31(1): 62-76.
doi: S1550-4131(19)30617-5 pmid: 31813823 |
[11] |
BENSAAD K, FAVARO E, LEWIS C A, et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation[J]. Cell Rep, 2014, 9(1): 349-365.
doi: S2211-1247(14)00732-3 pmid: 25263561 |
[12] |
CORBET C, BASTIEN E, SANTIAGO DE JESUS J P, et al. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells[J]. Nat Commun, 2020, 11(1): 454.
doi: 10.1038/s41467-019-14262-3 pmid: 31974393 |
[13] |
ABUMRAD N A, CABODEVILLA A G, SAMOVSKI D, et al. Endothelial cell receptors in tissue lipid uptake and metabolism[J]. Circ Res, 2021, 128(3): 433-450.
doi: 10.1161/CIRCRESAHA.120.318003 pmid: 33539224 |
[14] |
WANG J C, LI Y S. CD36 tango in cancer: signaling pathways and functions[J]. Theranostics, 2019, 9(17): 4893-4908.
doi: 10.7150/thno.36037 pmid: 31410189 |
[15] |
PASCUAL G, AVGUSTINOVA A, MEJETTA S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 2017, 541(7635): 41-45.
doi: 10.1038/nature20791 |
[16] |
FENG W W, WILKINS O, BANG S, et al. CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies[J]. Cell Rep, 2019, 29(11): 3405-3420.e5.
doi: S2211-1247(19)31479-2 pmid: 31825825 |
[17] |
NI K W, WANG D M, XU H Y, et al. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism[J]. Cancer Cell Int, 2019, 19: 219.
doi: 10.1186/s12935-019-0941-8 pmid: 31462892 |
[18] |
SUN Q, ZHANG W, WANG L, et al. Hypermethylated CD36 gene affected the progression of lung cancer[J]. Gene, 2018, 678: 395-406.
doi: S0378-1119(18)30764-9 pmid: 29969695 |
[19] |
MA X Z, XIAO L L, LIU L T, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability[J]. Cell Metab, 2021, 33(5): 1001-1012.e5.
doi: 10.1016/j.cmet.2021.02.015 |
[20] |
WANG H P, FRANCO F, TSUI Y C, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors[J]. Nat Immunol, 2020, 21(3): 298-308.
doi: 10.1038/s41590-019-0589-5 pmid: 32066953 |
[21] |
FHU C W, ALI A. Fatty acid synthase: an emerging target in cancer[J]. Molecules, 2020, 25(17): 3935.
doi: 10.3390/molecules25173935 |
[22] |
NIEMAN K M, KENNY H A, PENICKA C V, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth[J]. Nat Med, 2011, 17(11): 1498-1503.
doi: 10.1038/nm.2492 pmid: 22037646 |
[23] | 刘倩, 王世凤, 徐缓, 等. CRABPII和E-FABP在非小细胞肺癌中的表达及其意义[J]. 中国肺癌杂志, 2013, 16(1): 12-19. |
LIU Q, WANG S F, XU H, et al. Expressions and significances of CRABPII and E-FABP in non-small cell lung cancer[J]. Chin J Lung Cancer, 2013, 16(1): 12-19. | |
[24] |
YANG S H, KOBAYASHI S, SEKINO K, et al. Fatty acid-binding protein 5 controls lung tumor metastasis by regulating the maturation of natural killer cells in the lung[J]. FEBS Lett, 2021, 595(13): 1797-1805.
doi: 10.1002/1873-3468.14106 pmid: 33982279 |
[25] |
KIMURA I, ICHIMURA A, OHUE-KITANO R, et al. Free fatty acid receptors in health and disease[J]. Physiol Rev, 2020, 100(1): 171-210.
doi: 10.1152/physrev.00041.2018 pmid: 31487233 |
[26] |
WANG X, HE S B, GU Y T, et al. Fatty acid receptor GPR120 promotes breast cancer chemoresistance by upregulating ABC transporters expression and fatty acid synthesis[J]. EBioMedicine, 2019, 40: 251-262.
doi: S2352-3964(18)30614-5 pmid: 30738829 |
[27] |
LIU Z, HOPKINS M M, ZHANG Z H, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells[J]. J Pharmacol Exp Ther, 2015, 352(2): 380-394.
doi: 10.1124/jpet.114.218974 pmid: 25491146 |
[28] |
BARTOSZEK A, FICHNA J, TARASIUK A, et al. Free fatty acid receptors as new potential targets in colorectal cancer[J]. Curr Drug Targets, 2020, 21(14): 1397-1404.
doi: 10.2174/1389450120666191112141901 |
[29] |
MUNKARAH A, MERT I, CHHINA J, et al. Targeting of free fatty acid receptor 1 in EOC: a novel strategy to restrict the adipocyte-EOC dependence[J]. Gynecol Oncol, 2016, 141(1): 72-79.
doi: 10.1016/j.ygyno.2016.02.026 pmid: 27016232 |
[30] |
BACCI M, LORITO N, SMIRIGLIA A, et al. Fat and furious: lipid metabolism in antitumoral therapy response and resistance[J]. Trends Cancer, 2021, 7(3): 198-213.
doi: 10.1016/j.trecan.2020.10.004 pmid: 33281098 |
[31] |
RÖHRIG F, SCHULZE A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16(11): 732-749.
doi: 10.1038/nrc.2016.89 pmid: 27658529 |
[32] |
MOSSMANN D, PARK S, HALL M N. mTOR signalling and cellular metabolism are mutual determinants in cancer[J]. Nat Rev Cancer, 2018, 18(12): 744-757.
doi: 10.1038/s41568-018-0074-8 pmid: 30425336 |
[33] |
WILLIAMS K J, ARGUS J P, ZHU Y, et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity[J]. Cancer Res, 2013, 73(9): 2850-2862.
doi: 10.1158/0008-5472.CAN-13-0382-T pmid: 23440422 |
[34] |
EZZEDDINI R, TAGHIKHANI M, SOMI M H, et al. Clinical importance of FASN in relation to HIF-1α and SREBP-1c in gastric adenocarcinoma[J]. Life Sci, 2019, 224: 169-176.
doi: S0024-3205(19)30220-6 pmid: 30914315 |
[35] |
PETERSON T R, SENGUPTA S S, HARRIS T E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway[J]. Cell, 2011, 146(3): 408-420.
doi: 10.1016/j.cell.2011.06.034 pmid: 21816276 |
[36] |
MA L, CHEN Z B, ERDJUMENT-BROMAGE H, et al. Phosphorylation and functional inactivation of TSC2 by ERK implications for tuberous sclerosis and cancer pathogenesis[J]. Cell, 2005, 121(2): 179-193.
doi: 10.1016/j.cell.2005.02.031 pmid: 15851026 |
[37] |
GOUW A M, EBERLIN L S, MARGULIS K, et al. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma[J]. Proc Natl Acad Sci USA, 2017, 114(17): 4300-4305.
doi: 10.1073/pnas.1617709114 pmid: 28400509 |
[38] |
TALEBI A, DEHAIRS J, RAMBOW F, et al. Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy[J]. Nat Commun, 2018, 9(1): 2500.
doi: 10.1038/s41467-018-04664-0 pmid: 29950559 |
[39] |
DAI M, YANG B K, CHEN J, et al. Nuclear-translocation of ACLY induced by obesity-related factors enhances pyrimidine metabolism through regulating histone acetylation in endometrial cancer[J]. Cancer Lett, 2021, 513: 36-49.
doi: 10.1016/j.canlet.2021.04.024 pmid: 33991616 |
[40] |
MIGITA T, NARITA T, NOMURA K, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer[J]. Cancer Res, 2008, 68(20): 8547-8554.
doi: 10.1158/0008-5472.CAN-08-1235 pmid: 18922930 |
[41] | CSANADI A, KAYSER C, DONAUER M, et al. Prognostic value of malic enzyme and ATP-citrate lyase in non-small cell lung cancer of the young and the elderly[J]. PLoS One, 2015, 10(5): e0126357. |
[42] |
GUO W N, MA J Y, YANG Y Q, et al. ATP-citrate lyase epigenetically potentiates oxidative phosphorylation to promote melanoma growth and adaptive resistance to MAPK inhibition[J]. Clin Cancer Res, 2020, 26(11): 2725-2739.
doi: 10.1158/1078-0432.CCR-19-1359 pmid: 32034077 |
[43] |
HAN Q, CHEN C A, YANG W, et al. ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 251-261.
doi: 10.1016/j.hbpd.2020.05.010 |
[44] | BIAN X, LIU R, MENG Y, et al. Lipid metabolism and cancer[J]. J Exp Med, 2021, 218(1): e20201606. |
[45] |
SVENSSON R U, PARKER S J, EICHNER L J, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J]. Nat Med, 2016, 22(10): 1108-1119.
doi: 10.1038/nm.4181 pmid: 27643638 |
[46] |
RIOS GARCIA M, STEINBAUER B, SRIVASTAVA K, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence[J]. Cell Metab, 2017, 26(6): 842-855.e5.
doi: S1550-4131(17)30570-3 pmid: 29056512 |
[47] |
GU L, ZHU Y H, LIN X, et al. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis[J]. Oncogene, 2020, 39(11): 2437-2449.
doi: 10.1038/s41388-020-1156-0 pmid: 31974474 |
[48] |
BASTOS D C, RIBEIRO C F, AHEARN T, et al. Genetic ablation of FASN attenuates the invasive potential of prostate cancer driven by Pten loss[J]. J Pathol, 2021, 253(3): 292-303.
doi: 10.1002/path.v253.3 |
[49] |
CHANG L G, FANG S R, CHEN Y B, et al. Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway[J]. Lipids Health Dis, 2019, 18(1): 118.
doi: 10.1186/s12944-019-1058-8 pmid: 31122252 |
[50] |
JIANG L, XIAO L, SUGIURA H, et al. Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition[J]. Oncogene, 2015, 34(30): 3908-3916.
doi: 10.1038/onc.2014.321 pmid: 25284588 |
[51] |
LEWIS C A, BRAULT C, PECK B, et al. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J]. Oncogene, 2015, 34(40): 5128-5140.
doi: 10.1038/onc.2014.439 pmid: 25619842 |
[52] |
YOUNG R M, ACKERMAN D, QUINN Z L, et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress[J]. Genes Dev, 2013, 27(10): 1115-1131.
doi: 10.1101/gad.198630.112 |
[53] |
ZHANG J Q, SONG F, ZHAO X J, et al. EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer[J]. Mol Cancer, 2017, 16(1): 127.
doi: 10.1186/s12943-017-0704-x pmid: 28724430 |
[54] |
HUANG Q F, WANG Q G, LI D, et al. Co-administration of 20(S)-protopanaxatriol (g-PPT) and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 129.
doi: 10.1186/s13046-019-1120-4 |
[55] |
LI Z, LIU H, LUO X. Lipid droplet and its implication in cancer progression[J]. Am J Cancer Res, 2020, 10(12): 4112-4122.
pmid: 33414989 |
[56] |
EL-MASHTOLY S F, YOSEF H K, PETERSEN D, et al. Label-free Raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells[J]. Anal Chem, 2015, 87(14): 7297-7304.
doi: 10.1021/acs.analchem.5b01431 pmid: 26075314 |
[57] |
ZECHNER R, ZIMMERMANN R, EICHMANN T O, et al. FAT SIGNALS: lipases and lipolysis in lipid metabolism and signaling[J]. Cell Metab, 2012, 15(3): 279-291.
doi: 10.1016/j.cmet.2011.12.018 |
[58] |
PRÜSER J L, RAMER R, WITTIG F, et al. The monoacylglycerol lipase inhibitor JZL184 inhibits lung cancer cell invasion and metastasis via the CB1 cannabinoid receptor[J]. Mol Cancer Ther, 2021, 20(5): 787-802.
doi: 10.1158/1535-7163.MCT-20-0589 pmid: 33632876 |
[59] |
KIENZL M, HASENOEHRL C, MAITZ K, et al. Monoacylglycerol lipase deficiency in the tumor microenvironment slows tumor growth in non-small cell lung cancer[J]. Oncoimmunology, 2021, 10(1): 1965319.
doi: 10.1080/2162402X.2021.1965319 |
[60] |
LIU R Y, WANG X, CURTISS C, et al. Monoglyceride lipase gene knockout in mice leads to increased incidence of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 36.
doi: 10.1038/s41419-017-0188-z pmid: 29348400 |
[61] |
MA Y B, TEMKIN S M, HAWKRIDGE A M, et al. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer[J]. Cancer Lett, 2018, 435: 92-100.
doi: S0304-3835(18)30518-4 pmid: 30102953 |
[62] |
PADANAD M S, KONSTANTINIDOU G, VENKATESWARAN N, et al. Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis[J]. Cell Rep, 2016, 16(6): 1614-1628.
doi: S2211-1247(16)30895-6 pmid: 27477280 |
[63] |
WANG T Y, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(6): 1357.
doi: S1550-4131(18)30302-4 pmid: 29874570 |
[64] |
HOY A J, NAGARAJAN S R, BUTLER L M. Tumour fatty acid metabolism in the context of therapy resistance and obesity[J]. Nat Rev Cancer, 2021, 21(12): 753-766.
doi: 10.1038/s41568-021-00388-4 pmid: 34417571 |
[65] |
SCHLAEPFER I R, JOSHI M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology, 2020, 161(2): bqz046.
doi: 10.1210/endocr/bqz046 |
[66] |
WANG Y N, ZENG Z L, LU J H, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis[J]. Oncogene, 2018, 37(46): 6025-6040.
doi: 10.1038/s41388-018-0384-z |
[67] | 贾建博, 王涛, 辛向兵, 等. CPT1A促进肺癌转移的调控作用[J]. 海南医学, 2019, 30(1): 5-8. |
JIA J B, WANG T, XIN X B, et al. Roles of CPT1A promoting lung cancer metastasis[J]. Hainan Med J, 2019, 30(1): 5-8. | |
[68] |
KOUNDOUROS N, POULOGIANNIS G. Reprogramming of fatty acid metabolism in cancer[J]. Br J Cancer, 2020, 122(1): 4-22.
doi: 10.1038/s41416-019-0650-z |
[69] |
RELAT J, BLANCAFORT A, OLIVERAS G, et al. Different fatty acid metabolism effects of (-)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer[J]. BMC Cancer, 2012, 12: 280.
doi: 10.1186/1471-2407-12-280 pmid: 22769244 |
[70] |
ZHOU W J, ZHANG J, YAN M K, et al. Orlistat induces ferroptosis-like cell death of lung cancer cells[J]. Front Med, 2021, 15(6): 922-932.
doi: 10.1007/s11684-020-0804-7 |
[71] |
BUCKLEY D, DUKE G, HEUER T S, et al. Fatty acid synthase-modern tumor cell biology insights into a classical oncology target[J]. Pharmacol Ther, 2017, 177: 23-31.
doi: 10.1016/j.pharmthera.2017.02.021 |
[72] |
FALCHOOK G, INFANTE J, ARKENAU H T, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors[J]. EClinicalMedicine, 2021, 34: 100797.
doi: 10.1016/j.eclinm.2021.100797 |
[73] |
GRANCHI C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism[J]. Eur J Med Chem, 2018, 157: 1276-1291.
doi: S0223-5234(18)30773-6 pmid: 30195238 |
[74] |
YANG L, ZHANG F Q, WANG X, et al. A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer[J]. Oncotarget, 2016, 7(34): 55543-55554.
doi: 10.18632/oncotarget.10837 pmid: 27765901 |
[75] |
VENTURA R, MORDEC K, WASZCZUK J, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression[J]. EBioMedicine, 2015, 2(8): 808-824.
doi: 10.1016/j.ebiom.2015.06.020 pmid: 26425687 |
[76] |
LOOMBA R, MOHSENI R, LUCAS K J, et al. TVB-2640 (FASN inhibitor) for the treatment of nonalcoholic steatohepatitis: FASCINATE-1, a randomized, placebo-controlled phase 2a trial[J]. Gastroenterology, 2021, 161(5): 1475-1486.
doi: 10.1053/j.gastro.2021.07.025 |
[77] |
ZHANG C, LIU J, HUANG G, et al. Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression[J]. Genes Dev, 2016, 30(17): 1956-1970.
doi: 10.1101/gad.283283.116 |
[78] |
HANAI J, DORO N, SASAKI A T, et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways[J]. J Cell Physiol, 2012, 227(4): 1709-1720.
doi: 10.1002/jcp.22895 |
[79] |
HATZIVASSILIOU G, ZHAO F P, BAUER D E, et al. ATP citrate lyase inhibition can suppress tumor cell growth[J]. Cancer Cell, 2005, 8(4): 311-321.
doi: 10.1016/j.ccr.2005.09.008 pmid: 16226706 |
[80] |
PISANU M E, NOTO A, DE VITIS C, et al. Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells[J]. Cancer Lett, 2017, 406: 93-104.
doi: S0304-3835(17)30463-9 pmid: 28797843 |
[81] |
SHE K L, FANG S H, DU W, et al. SCD1 is required for EGFR-targeting cancer therapy of lung cancer via re-activation of EGFR/PI3K/AKT signals[J]. Cancer Cell Int, 2019, 19: 103.
doi: 10.1186/s12935-019-0809-y pmid: 31019378 |
[82] | HESS D, CHISHOLM J W, IGAL R A. Inhibition of stearoyl-CoA-desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells[J]. PLoS One, 2010, 5(6): e11394. |
[83] |
VRIENS K, CHRISTEN S, PARIK S, et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity[J]. Nature, 2019, 566(7744): 403-406.
doi: 10.1038/s41586-019-0904-1 |
[84] |
LIEN E C, WESTERMARK A M, ZHANG Y, et al. Low glycaemic diets alter lipid metabolism to influence tumour growth[J]. Nature, 2021, 599(7884): 302-307.
doi: 10.1038/s41586-021-04049-2 |
[85] |
DIERGE E, DEBOCK E, GUILBAUD C, et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects[J]. Cell Metab, 2021, 33(8): 1701-1715.e5.
doi: 10.1016/j.cmet.2021.05.016 pmid: 34118189 |
[1] | 蒋金玲, 周尘飞, 王超, 赵丽琴, 吴珺玮, 张俊. 2022年度胃癌研究和诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 303-314. |
[2] | 田熙, 徐文浩, 朱殊璇, 艾合太木江·安外尔, 宿佳琦, 叶世琪, 瞿元元, 施国海, 张海梁, 叶定伟. 2022年度肾细胞癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 191-200. |
[3] | 苏春霞, 周彩存. 2022年度肺癌领域重要临床研究进展[J]. 中国癌症杂志, 2023, 33(3): 218-227. |
[4] | 曹晓珊, 丛斌斌. 三阳性乳腺癌内分泌治疗联合靶向治疗的研究进展[J]. 中国癌症杂志, 2023, 33(3): 288-292. |
[5] | 邵志博, 杨犇龙, 吴炅. 2022年中国乳腺癌重要临床试验成果及最新进展[J]. 中国癌症杂志, 2023, 33(2): 103-109. |
[6] | 郭晴, 张剑. HER2低表达乳腺癌的靶向治疗研究进展[J]. 中国癌症杂志, 2023, 33(2): 181-190. |
[7] | 邹淳缘, 许晓峰, 卢仁泉, 郭林. 肺癌组织和外周血中p53、PGP9.5、SOX2、GAGE7、GBU4-5和MAGE A1蛋白水平检测及其临床价值探讨[J]. 中国癌症杂志, 2023, 33(1): 36-44. |
[8] | 肖玉铃, 朱秀之, 江一舟, 邵志敏. 三阴性乳腺癌精准治疗研究的新进展与未来展望[J]. 中国癌症杂志, 2022, 32(8): 669-679. |
[9] | 何丽媛, 王玉栋. ALK激酶域耐药突变的研究进展及未来应对策略[J]. 中国癌症杂志, 2022, 32(8): 736-746. |
[10] | 洪雅萍, 黄韵坚, 黄漳州, 陈胜佳, 钟巧凤, 曾洪福, 庄武. EGFR突变的晚期非小细胞肺癌患者接受一代TKI靶向治疗的效果及预后预测因子分析[J]. 中国癌症杂志, 2022, 32(7): 624-634. |
[11] | 吴建辉, 储香玲, 王李强, 林心情, 谢晓鸿, 谢梦青, 赵静, 邓海怡, 杨伊霖, 邱桂焕, 周茂林, 孙霓, 李茹, 陈萤, 邓佳茜, 曾晨, 潘柏林, 秦茵茵, 刘明, 苏春霞, 周承志. 中国肺癌患者真实世界免疫检查点抑制剂相关性肺炎的流行病学分析[J]. 中国癌症杂志, 2022, 32(6): 469-477. |
[12] | 苏春霞, 周彩存. 晚期非小细胞肺癌免疫治疗现状及未来方向[J]. 中国癌症杂志, 2022, 32(6): 478-486. |
[13] | 虞思来, 倪建佼, 朱正飞. 免疫治疗时代不可手术局部晚期非小细胞肺癌的治疗:现状与展望[J]. 中国癌症杂志, 2022, 32(6): 487-498. |
[14] | 李小秋, CD30阳性淋巴瘤病理专家组. CD30在淋巴瘤中的表达及检测:现状与挑战[J]. 中国癌症杂志, 2022, 32(6): 512-518. |
[15] | 宿佳琦, 徐文浩, 田熙, 艾合太木江·安外尔, 瞿元元, 施国海, 张海梁, 叶定伟. 肾透明细胞癌联合免疫治疗新策略——有氧糖酵解的研究进展及展望[J]. 中国癌症杂志, 2022, 32(4): 287-297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn