[1] |
AOKI M, MIEDA M, IKEDA T, et al. R-spondin3 is required for mouse placental development[J]. Dev Biol, 2007, 301(1): 218-226.
doi: 10.1016/j.ydbio.2006.08.018
pmid: 16963017
|
[2] |
KNIGHT M N, HANKENSON K D. R-spondins: novel matricellular regulators of the skeleton[J]. Matrix Biol, 2014, 37: 157-161.
doi: 10.1016/j.matbio.2014.06.003
pmid: 24980904
|
[3] |
NILSSON K H, HENNING P, EL SHAHAWY M, et al. RSPO3 is important for trabecular bone and fracture risk in mice and humans[J]. Nat Commun, 2021, 12(1): 4923.
doi: 10.1038/s41467-021-25124-2
pmid: 34389713
|
[4] |
KAZANSKAYA O, OHKAWARA B, HEROULT M, et al. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development[J]. Development, 2008, 135(22): 3655-3664.
doi: 10.1242/dev.027284
pmid: 18842812
|
[5] |
KURTOVA A V, HEINLEIN M, HAAS S, et al. Disruption of stem cell niche-confined R-spondin 3 expression leads to impaired hematopoiesis[J]. Blood Adv, 2023, 7(4): 491-507.
doi: 10.1182/bloodadvances.2022007714
|
[6] |
LOH N Y, MINCHIN J E N, PINNICK K E, et al. RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro[J]. Nat Commun, 2020, 11(1): 2797.
doi: 10.1038/s41467-020-16592-z
pmid: 32493999
|
[7] |
KUROKAWA K, WANG T C, HAYAKAWA Y. R-spondin 3 governs secretory differentiation in the gastric oxyntic glands[J]. J Clin Invest, 2022, 132(21): e163380.
doi: 10.1172/JCI163380
|
[8] |
OGASAWARA R, HASHIMOTO D, KIMURA S, et al. Intestinal lymphatic endothelial cells produce R-spondin 3[J]. Sci Rep, 2018, 8(1): 10719.
doi: 10.1038/s41598-018-29100-7
|
[9] |
GREICIUS G, KABIRI Z, SIGMUNDSSON K, et al. PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo[J]. Proc Natl Acad Sci U S A, 2018, 115(14): E3173-E3181.
|
[10] |
YAN K S, JANDA C Y, CHANG J L, et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal[J]. Nature, 2017, 545(7653): 238-242.
doi: 10.1038/nature22313
|
[11] |
ANNUNZIATO S, SUN T, TCHORZ J S. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease[J]. Hepatology, 2022, 76(3): 888-899.
doi: 10.1002/hep.32328
|
[12] |
KUANG S Q, TONG W G, YANG H, et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia[J]. Leukemia, 2008, 22(8): 1529-1538.
doi: 10.1038/leu.2008.130
pmid: 18528427
|
[13] |
KANEDA H, ARAO T, TANAKA K, et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth[J]. Cancer Res, 2010, 70(5): 2053-2063.
doi: 10.1158/0008-5472.CAN-09-2161
pmid: 20145154
|
[14] |
THEODOROU V, KIMM M A, BOER M, et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer[J]. Nat Genet, 2007, 39(6): 759-769.
doi: 10.1038/ng2034
pmid: 17468756
|
[15] |
TER STEEGE E J, BOER M, TIMMER N C, et al. R-spondin 3 is an oncogenic driver of poorly differentiated invasive breast cancer[J]. J Pathol, 2022, 258(3): 289-299.
doi: 10.1002/path.v258.3
|
[16] |
GU H F, TU H, LIU L L, et al. RSPO3 is a marker candidate for predicting tumor aggressiveness in ovarian cancer[J]. Ann Transl Med, 2020, 8(21): 1351.
doi: 10.21037/atm-20-3731
pmid: 33313096
|
[17] |
CHEN Z H, ZHOU L J, CHEN L, et al. RSPO3 promotes the aggressiveness of bladder cancer via Wnt/β-catenin and Hedgehog signaling pathways[J]. Carcinogenesis, 2019, 40(2): 360-369.
doi: 10.1093/carcin/bgy140
pmid: 30329043
|
[18] |
CHEN Z L, ZHANG J Z, YUAN A W, et al. R-spondin 3 promotes the tumor growth of choriocarcinoma JEG-3 cells[J]. Am J Physiol Cell Physiol, 2020, 318(3): C664-C674.
doi: 10.1152/ajpcell.00295.2019
|
[19] |
TANG Y T, XU Q, HU L, et al. Tumor microenvironment-derived R-spondins enhance antitumor immunity to suppress tumor growth and sensitize for immune checkpoint blockade therapy[J]. Cancer Discov, 2021, 11(12): 3142-3157.
doi: 10.1158/2159-8290.CD-20-0833
|
[20] |
SESHAGIRI S, STAWISKI E W, DURINCK S, et al. Recurrent R-spondin fusions in colon cancer[J]. Nature, 2012, 488(7413): 660-664.
doi: 10.1038/nature11282
|
[21] |
TANG Y, ZHOU C, LI Q L, et al. Targeting depletion of myeloid-derived suppressor cells potentiates PD-L1 blockade efficacy in gastric and colon cancers[J]. Oncoimmunology, 2022, 11(1): 2131084.
doi: 10.1080/2162402X.2022.2131084
|
[22] |
焦红丽, 王珺娆, 胡敏萱, 等. SAFB通过调节Wnt信号通路活性促进结直肠癌增殖[J]. 临床与实验病理学杂志, 2022, 38(4): 385-391
|
|
JIAO H L, WANG J R, HU M X, et al. SAFB promotes colorectal cancer proliferation by regulating Wnt signaling pathway activity[J]. Chin J Clin Exp Pathol, 2022, 38(4): 385-391
|
[23] |
RHODES D R, KALYANA-SUNDARAM S, MAHAVISNO V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles[J]. Neoplasia, 2007, 9(2): 166-180.
doi: 10.1593/neo.07112
|
[24] |
GHANDI M, HUANG F W, JANÉ-VALBUENA J, et al. Next-generation characterization of the cancer cell line encyclopedia[J]. Nature, 2019, 569(7757): 503-508.
doi: 10.1038/s41586-019-1186-3
|
[25] |
RU B B, WONG C N, TONG Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions[J]. Bioinformatics, 2019, 35(20): 4200-4202.
doi: 10.1093/bioinformatics/btz210
pmid: 30903160
|
[26] |
TANG Z F, LI C W, KANG B X, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
doi: 10.1093/nar/gkx247
|
[27] |
RUSSICK J, TORSET C, HEMERY E, et al. NK cells in the tumor microenvironment: prognostic and theranostic impact. Recent advances and trends[J]. Semin Immunol, 2020, 48: 101407.
doi: 10.1016/j.smim.2020.101407
|
[28] |
OHKAWARA B, GLINKA A, NIEHRS C. RSPO3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis[J]. Dev Cell, 2011, 20(3): 303-314.
doi: 10.1016/j.devcel.2011.01.006
pmid: 21397842
|