中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (11): 1026-1031.doi: 10.19401/j.cnki.1007-3639.2023.11.008
收稿日期:
2023-05-03
修回日期:
2023-07-03
出版日期:
2023-11-30
发布日期:
2023-12-14
通信作者:
崔玖洁(ORCID: 0000-0003-0853-7569),博士,主治医师、副研究员。
作者简介:
岳铭(ORCID: 0000-0002-4719-0759),博士。
基金资助:
YUE Ming(), WANG Liwei, CUI Jiujie()
Received:
2023-05-03
Revised:
2023-07-03
Published:
2023-11-30
Online:
2023-12-14
文章分享
摘要:
胰腺癌是一种高度恶性的消化系统肿瘤,由于早期无特异性的临床症状,其早期诊断非常困难,几乎一半的胰腺癌患者在初次确诊时已经发生了远处转移,转移性胰腺癌的生物学特性研究尤为重要。近年来,胰腺癌的器官特异性转移受到了广泛关注,胰腺癌肺转移患者表现出显著的生存优势。与其他部位转移相比,胰腺癌肺转移在基因表达、肿瘤微环境及肿瘤干细胞等多个方面也存在显著差异。本文对胰腺癌器官特异性肺转移机制的研究进展进行综述。
中图分类号:
岳铭, 王理伟, 崔玖洁. 胰腺癌器官特异性肺转移机制的研究进展[J]. 中国癌症杂志, 2023, 33(11): 1026-1031.
YUE Ming, WANG Liwei, CUI Jiujie. Research progress on the mechanism of organ-specific lung metastasis in pancreatic cancer[J]. China Oncology, 2023, 33(11): 1026-1031.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] | CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. |
[3] |
MIZRAHI J D, SURANA R, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020.
doi: S0140-6736(20)30974-0 pmid: 32593337 |
[4] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
doi: 10.3322/caac.v72.1 |
[5] |
SPRINGFELD C, JAGER D, BUCHLER M W, et al. Chemotherapy for pancreatic cancer[J]. Presse Med, 2019, 48(3): E159-E174.
doi: 10.1016/j.lpm.2019.02.025 |
[6] |
KRUGER S, HAAS M, BURGER P J, et al. Isolated pulmonary metastases define a favorable subgroup in metastatic pancreatic cancer[J]. Pancreatology, 2016, 16(4): 593-598.
doi: 10.1016/j.pan.2016.03.016 pmid: 27067420 |
[7] |
KAMISAWA T, ISAWA T, KOIKE M, et al. Hematogenous metastases of pancreatic ductal carcinoma[J]. Pancreas, 1995, 11(4): 345-349.
doi: 10.1097/00006676-199511000-00005 |
[8] |
YACHIDA S, IACOBUZIO-DONAHUE C A. The pathology and genetics of metastatic pancreatic cancer[J]. Arch Pathol Lab Med, 2009, 133(3): 413-422.
doi: 10.1043/1543-2165-133.3.413 pmid: 19260747 |
[9] |
HO W J, ERBE R, DANILOVA L, et al. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways[J]. Genome Biol, 2021, 22(1): 154.
doi: 10.1186/s13059-021-02363-6 pmid: 33985562 |
[10] |
OETTLE H, NEUHAUS P, HOCHHAUS A, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial[J]. JAMA, 2013, 310(14): 1473-1481.
doi: 10.1001/jama.2013.279201 pmid: 24104372 |
[11] |
SINN M, BAHRA M, LIERSCH T, et al. CONKO-005: adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after R0 resection of pancreatic cancer: a multicenter randomized phase Ⅲ trial[J]. J Clin Oncol, 2017, 35(29): 3330-3337.
doi: 10.1200/JCO.2017.72.6463 |
[12] |
SINN M, LIERSCH T, RIESS H, et al. CONKO-006: a randomised double-blinded phase Ⅱb-study of additive therapy with gemcitabine+sorafenib/placebo in patients with R1 resection of pancreatic cancer-final results[J]. Eur J Cancer, 2020, 138: 172-181.
doi: 10.1016/j.ejca.2020.06.032 |
[13] |
KURRECK A, WECKWERTH J, MODEST D P, et al. Impact of completeness of adjuvant gemcitabine, relapse pattern, and subsequent therapy on outcome of patients with resected pancreatic ductal adenocarcinoma-a pooled analysis of CONKO-001, CONKO-005, and CONKO-006 trials[J]. Eur J Cancer, 2021, 150: 250-259.
doi: 10.1016/j.ejca.2021.03.036 |
[14] |
NEOPTOLEMOS J P, PALMER D H, GHANEH P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet, 2017, 389(10073): 1011-1024.
doi: S0140-6736(16)32409-6 pmid: 28129987 |
[15] | KIM S, ITCHINS M, ARENA J, et al. Patterns and determinants of recurrence for pancreatic ductal adenocarcinoma after resection[J]. J Pancreas. 2017, 18(6): 458-464. |
[16] | LIU K H, HUNG C Y, HSUEH S W, et al. Lung metastases in patients with stage Ⅳ pancreatic cancer: prevalence, risk factors, and survival impact[J]. J Clin Med, 2019, 8(9): E1402. |
[17] |
GUERRA F, BARUCCA V, COLETTA D. Metastases or primary recurrence to the lung is related to improved survival of pancreatic cancer as compared to other sites of dissemination. Results of a systematic review with meta-analysis[J]. Eur J Surg Oncol, 2020, 46(10 Pt A): 1789-1794.
doi: S0748-7983(20)30533-3 pmid: 32753117 |
[18] |
KRUGER S F, LOHNEIS A, ABENDROTH A, et al. Prognosis and tumor biology of pancreatic cancer patients with isolated lung metastases: translational results from the German multicenter AIO-YMO-PAK-0515 study[J]. ESMO Open, 2022, 7(1): 100388.
doi: 10.1016/j.esmoop.2022.100388 |
[19] |
BUSCAIL E, CHAUVET A, QUINCY P, et al. CD63-GPC1-positive exosomes coupled with CA19-9 offer good diagnostic potential for resectable pancreatic ductal adenocarcinoma[J]. Transl Oncol, 2019, 12(11): 1395-1403.
doi: S1936-5233(19)30180-9 pmid: 31400579 |
[20] |
KÜNZLI B M, BERBERAT P O, ZHU Z W W, et al. Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma[J]. Cancer, 2002, 94(1): 228-239.
pmid: 11815981 |
[21] |
LI M, WU X D, LIU N, et al. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy[J]. Cell Biol Int, 2017, 41(6): 599-610.
doi: 10.1002/cbin.10760 pmid: 28318081 |
[22] |
JEON Y H, HA M, KIM S W, et al. Evaluation of the prognostic significances of γ-secretase genes in pancreatic cancer[J]. Oncol Lett, 2019, 17(5): 4614-4620.
doi: 10.3892/ol.2019.10113 pmid: 30944650 |
[23] |
FERGUSON M D, DONG L, WAN J, et al. Molecular alterations associated with DNA repair in pancreatic adenocarcinoma are associated with sites of recurrence[J]. J Gastrointest Cancer, 2019, 50(2): 285-291.
doi: 10.1007/s12029-018-0073-8 pmid: 29427136 |
[24] |
FORMICA V, DOLDO E, ANTONETTI F R, et al. Biological and predictive role of ERCC1 polymorphisms in cancer[J]. Crit Rev Oncol Hematol, 2017, 111: 133-143.
doi: S1040-8428(16)30262-1 pmid: 28259288 |
[25] | ULKER M, DUMAN B B, SAHIN B, et al. ERCC1 and RRM1 as a predictive parameter for non-small cell lung, ovarian or pancreas cancer treated with cisplatin and/or gemcitabine[J]. Contemp Oncol (Pozn), 2015, 19(3): 207-213. |
[26] |
LIU Y, CAO X. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell, 2016, 30(5): 668-681.
doi: S1535-6108(16)30446-9 pmid: 27846389 |
[27] |
ARMACKI M, POLASCHEK S, WALDENMAIER M, et al. Protein kinase D1, reduced in human pancreatic tumors, increases secretion of small extracellular vesicles from cancer cells that promote metastasis to lung in mice[J]. Gastroenterology, 2020, 159(3): 1019-1035.e22.
doi: S0016-5085(20)34705-3 pmid: 32446697 |
[28] |
GRÜNWALD B, HARANT V, SCHATEN S, et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver[J]. Gastroenterology, 2016, 151(5): 1011-1024.e7.
doi: 10.1053/j.gastro.2016.07.043 |
[29] |
WANG Y, LIANG Y Y, XU H Y, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response[J]. Cell Discov, 2021, 7(1): 36.
doi: 10.1038/s41421-021-00271-4 pmid: 34035226 |
[30] |
XIAO Q, ZHOU D E, RUCKI A A, et al. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation[J]. Cancer Res, 2016, 76(18): 5395-5404.
doi: 10.1158/0008-5472.CAN-15-3264 pmid: 27496707 |
[31] |
PAN X Y, ZHOU J J, XIAO Q, et al. Cancer-associated fibroblast heterogeneity is associated with organ-specific metastasis in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2021, 14(1): 184.
doi: 10.1186/s13045-021-01203-1 |
[32] |
SASAKI T, NISHIWADA S, NAKAGAWA K, et al. Integrative analysis identifies activated anti-tumor immune microenvironment in lung metastasis of pancreatic cancer[J]. Int J Clin Oncol, 2022, 27(5): 948-957.
doi: 10.1007/s10147-022-02131-x pmid: 35142963 |
[33] |
HERMANN P C, HUBER S L, HERRLER T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3): 313-323.
doi: 10.1016/j.stem.2007.06.002 pmid: 18371365 |
[34] |
LI C W, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037.
doi: 10.1158/0008-5472.CAN-06-2030 pmid: 17283135 |
[35] |
NIMMAKAYALA R K, LEON F, RACHAGANI S, et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40(1): 215-231.
doi: 10.1038/s41388-020-01518-2 pmid: 33110235 |
[36] |
LU W, KANG Y B. Epithelial-mesenchymal plasticity in cancer progression and metastasis[J]. Dev Cell, 2019, 49(3): 361-374.
doi: S1534-5807(19)30280-1 pmid: 31063755 |
[37] |
REYNOLDS A B, ROCZNIAK-FERGUSON A. Emerging roles for p120-catenin in cell adhesion and cancer[J]. Oncogene, 2004, 23(48): 7947-7956.
doi: 10.1038/sj.onc.1208161 pmid: 15489912 |
[38] |
REICHERT M, BAKIR B, MOREIRA L, et al. Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer[J]. Dev Cell, 2018, 45(6): 696-711.e8.
doi: S1534-5807(18)30418-0 pmid: 29920275 |
[1] | 黄浩哲, 陈红, 郑德重, 陈超, 王英, 许立超, 王耀辉, 何新红, 杨媛媛, 李文涛. 基于CT的影像组学诺模图预测结直肠癌肺转移射频消融后的局部肿瘤进展[J]. 中国癌症杂志, 2024, 34(9): 857-872. |
[2] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[3] | 徐梓淇, 胡睿智, 李军建, 王红霞, 桑友洲. 甲基化驱动基因IFFO1在胰腺癌诊断和预后中的作用及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2024, 34(11): 998-1010. |
[4] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[5] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
[6] | 杨梓怡, 顾丙新, 许晓平, 宋少莉. 18F-FDG和68Ga-FAPI PET/CT在不同恶性肿瘤肺转移诊断中的对比研究[J]. 中国癌症杂志, 2023, 33(9): 829-833. |
[7] | 曾铖, 张剑. 2022年度ADC在胰腺癌领域的研究新进展及展望[J]. 中国癌症杂志, 2023, 33(3): 235-240. |
[8] | 符庆胜, 金雷, 张旭东, 徐荧晨, 朱春富, 秦锡虎, 吴宝强. tRF-Pro-CGG对小鼠胰腺癌细胞生物学行为的影响及其分子机制[J]. 中国癌症杂志, 2023, 33(3): 241-249. |
[9] | 贾聿明, 叶增, 邓艳丽, 李胜超, 张志磊, 王超, 徐晓武, 秦毅, 彭利. FBW7基因通过GSDME介导的焦亡增强紫杉醇对胰腺癌的抗肿瘤作用研究[J]. 中国癌症杂志, 2023, 33(10): 889-897. |
[10] | 王旭, 程合, 刘辰, 虞先濬. 2022年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(1): 1-13. |
[11] | 庄晗, 凌池芳, 王佳舟, 韩序, 姜睿, 胡伟刚. 局部晚期胰腺癌75 Gy同步加量放射治疗的剂量可行性研究[J]. 中国癌症杂志, 2023, 33(1): 54-60. |
[12] | 李语婕, 陈颢. 靶向TROP2在胰腺癌治疗中的潜力[J]. 中国癌症杂志, 2022, 32(3): 268-273. |
[13] | 吴梦吟, 吴春晓, 庞怡, 王春芳, 顾凯, 龚杨明, 鲍萍萍, 施亮, 窦剑明, 向詠梅, 施燕. 2016年上海市胰腺癌发病和死亡情况与2002—2016年流行趋势分析[J]. 中国癌症杂志, 2022, 32(2): 97-105. |
[14] | 韩如雪, 梁翔, 马旭辉, 郭伟, 吴云腾, 任国欣. 口腔黏膜恶性黑色素瘤肺转移特征及预后分析[J]. 中国癌症杂志, 2022, 32(12): 1184-1189. |
[15] | 罗国培, 虞先濬. 胰腺癌精准治疗:从小众走向主流[J]. 中国癌症杂志, 2022, 32(10): 960-970. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn