中国癌症杂志 ›› 2024, Vol. 34 ›› Issue (3): 306-315.doi: 10.19401/j.cnki.1007-3639.2024.03.009
收稿日期:
2024-01-05
修回日期:
2024-02-05
出版日期:
2024-03-30
发布日期:
2024-04-08
通信作者:
傅小龙(ORCID: 0000-0001-8127-3884),博士,主任医师、教授,上海市胸科医院/上海交通大学医学院附属胸科医院放疗科主任。
作者简介:
姜梦琦(ORCID: 0009-0000-3691-5251),博士在读。
基金资助:
JIANG Mengqi1(), HAN Yuchen2, FU Xiaolong1(
)
Received:
2024-01-05
Revised:
2024-02-05
Published:
2024-03-30
Online:
2024-04-08
Contact:
FU Xiaolong
文章分享
摘要:
病理学是疾病诊断的金标准。利用全切片扫描技术将病理切片转化为数字图像后,人工智能特别是深度学习模型在病理学图像分析领域展现出了巨大潜力。人工智能在肺癌全切片扫描中的应用涉及组织病理学分型、肿瘤微环境分析、疗效及生存预测等多个方面,有望辅助临床进行精准治疗决策。然而标注数据不足、切片质量差异等因素也限制了病理学图像分析的发展。本文总结了肺癌领域利用人工智能手段进行病理学图像分析的应用进展,并对未来发展方向进行展望。
中图分类号:
姜梦琦, 韩昱晨, 傅小龙. 基于人工智能的H-E染色全切片病理学图像分析在肺癌研究中的进展[J]. 中国癌症杂志, 2024, 34(3): 306-315.
JIANG Mengqi, HAN Yuchen, FU Xiaolong. Research progress on H-E stained whole slide image analysis by artificial intelligence in lung cancer[J]. China Oncology, 2024, 34(3): 306-315.
[1] | JAHN S W, PLASS M, MOINFAR F. Digital pathology: Advantages, limitations and emerging perspectives[J]. J Clin Med, 2020, 9(11): 3697. |
[2] |
MUKHOPADHYAY S, FELDMAN M D, ABELS E, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)[J]. Am J Surg Pathol, 2018, 42(1): 39-52.
doi: 10.1097/PAS.0000000000000948 pmid: 28961557 |
[3] |
DA SILVA L M, PEREIRA E M, SALLES P G, et al. Independent real-world application of a clinical-grade automated prostate cancer detection system[J]. J Pathol, 2021, 254(2): 147-158.
doi: 10.1002/path.v254.2 |
[4] |
COUDRAY N, OCAMPO P S, SAKELLAROPOULOS T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24(10): 1559-1567.
doi: 10.1038/s41591-018-0177-5 pmid: 30224757 |
[5] | ZHAO L, XU X W, HOU R P, et al. Lung cancer subtype classification using histopathological images based on weakly supervised multi-instance learning[J]. Phys Med Biol, 2021, 66(23). |
[6] | KHADER F, KATHER J N, HAN T Y, et al. Cascaded cross-attention networks for data-efficient whole-slide image classification using transformers[M]//CAO X, XU X, REKIK I, et al. International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2024: 417-426. |
[7] | YANG H, CHEN L L, CHENG Z Q, et al. Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study[J]. BMC Med, 2021, 19(1): 80. |
[8] | TERAMOTO A, TSUKAMOTO T, KIRIYAMA Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks[J]. Biomed Res Int, 2017, 2017: 4067832. |
[9] |
TSUKAMOTO T, TERAMOTO A, YAMADA A, et al. Comparison of fine-tuned deep convolutional neural networks for the automated classification of lung cancer cytology images with integration of additional classifiers[J]. Asian Pac J Cancer Prev, 2022, 23(4): 1315-1324.
doi: 10.31557/APJCP.2022.23.4.1315 |
[10] | GUAN Q, WAN X C, LU H T, et al. Deep convolutional neural network Inception-v3 model for differential diagnosing of lymph node in cytological images: a pilot study[J]. Ann Transl Med, 2019, 7(14): 307. |
[11] | YANG J W, SONG D H, AN H J, et al. Classification of subtypes including LCNEC in lung cancer biopsy slides using convolutional neural network from scratch[J]. Sci Rep, 2022, 12(1): 1830. |
[12] | ILIÉ M, BENZAQUEN J, TOURNIAIRE P, et al. Deep learning facilitates distinguishing histologic subtypes of pulmonary neuroendocrine tumors on digital whole-slide images[J]. Cancers, 2022, 14(7): 1740. |
[13] |
GONZALEZ D, DIETZ R L, PANTANOWITZ L. Feasibility of a deep learning algorithm to distinguish large cell neuroendocrine from small cell lung carcinoma in cytology specimens[J]. Cytopathology, 2020, 31(5): 426-431.
doi: 10.1111/cyt.12829 pmid: 32246504 |
[14] |
TRAVIS W D, BRAMBILLA E, NOGUCHI M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma[J]. J Thorac Oncol, 2011, 6(2): 244-285.
doi: 10.1097/JTO.0b013e318206a221 pmid: 21252716 |
[15] |
MOREIRA A L, OCAMPO P S S, XIA Y H, et al. A grading system for invasive pulmonary adenocarcinoma: a proposal from the international association for the study of lung cancer pathology committee[J]. J Thorac Oncol, 2020, 15(10): 1599-1610.
doi: S1556-0864(20)30468-8 pmid: 32562873 |
[16] | WEI J W, TAFE L J, LINNIK Y A, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks[J]. Sci Rep, 2019, 9(1): 3358. |
[17] | ZHAO Y L, HE S, ZHAO D, et al. Deep learning-based diagnosis of histopathological patterns for invasive non-mucinous lung adenocarcinoma using semantic segmentation[J]. BMJ Open, 2023, 13(7): e069181. |
[18] |
ALSUBAIE N, RAZA S E A, SNEAD D, et al. Growth pattern fingerprinting for automatic analysis of lung adenocarcinoma overall survival[J]. IEEE Access, 2023, 11: 23335-23346.
doi: 10.1109/ACCESS.2023.3251220 |
[19] | SADHWANI A, CHANG H W, BEHROOZ A, et al. Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images[J]. Sci Rep, 2021, 11(1): 16605. |
[20] |
KARASAKI T, MOORE D A, VEERIAH S, et al. Evolutionary characterization of lung adenocarcinoma morphology in TRACERx[J]. Nat Med, 2023, 29(4): 833-845.
doi: 10.1038/s41591-023-02230-w pmid: 37045996 |
[21] | YU K H, BERRY G J, RUBIN D L, et al. Association of omics features with histopathology patterns in lung adenocarcinoma[J]. Cell Syst, 2017, 5(6): 620-627.e3. |
[22] |
MAYER C, OFEK E, FRIDRICH D E, et al. Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms[J]. Mod Pathol, 2022, 35(12): 1882-1887.
doi: 10.1038/s41379-022-01141-4 |
[23] |
TOMITA N, TAFE L J, SURIAWINATA A A, et al. Predicting oncogene mutations of lung cancer using deep learning and histopathologic features on whole-slide images[J]. Transl Oncol, 2022, 24: 101494.
doi: 10.1016/j.tranon.2022.101494 |
[24] | TERADA Y, TAKAHASHI T, HAYAKAWA T, et al. Artificial intelligence-powered prediction of ALK gene rearrangement in patients with non-small-cell lung cancer[J]. JCO Clin Cancer Inform, 2022, 6: e2200070. |
[25] | CHOI Y L, PARK S, JUNG H A, et al. Deep learning-based ensemble model using hematoxylin and eosin (H&E) whole slide images (WSIs) for the prediction of MET mutations in non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2023, 41(16_suppl): e13578. |
[26] | KONISHI T, GRYNKIEWICZ M, SAITO K, et al. Deep learning-based approach to predict multiple genetic mutations in colorectal and lung cancer tissues using hematoxylin and eosin-stained whole-slide images[J]. J Clin Oncol, 2023, 41(16_suppl): 1549. |
[27] |
SHA L D, OSINSKI B L, HO I Y, et al. Multi-field-of-view deep learning model predicts nonsmall cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images[J]. J Pathol Inform, 2019, 10: 24.
doi: 10.4103/jpi.jpi_24_19 pmid: 31523482 |
[28] | ZHENG Y N, PIZURICA M, CARRILLO-PEREZ F, et al. Digital profiling of cancer transcriptomes from histology images with grouped vision attention[J]. bioRxiv, 2024: 2023.09.28.560068. |
[29] |
YU K H, WANG F R, BERRY G J, et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks[J]. J Am Med Inform Assoc, 2020, 27(5): 757-769.
doi: 10.1093/jamia/ocz230 |
[30] |
SALTZ J, GUPTA R, HOU L, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images[J]. Cell Rep, 2018, 23(1): 181-193.e7.
doi: S2211-1247(18)30447-9 pmid: 29617659 |
[31] |
GRAHAM S, VU Q D, RAZA S E A, et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images[J]. Med Image Anal, 2019, 58: 101563.
doi: 10.1016/j.media.2019.101563 |
[32] | HOU L, GUPTA R, VAN ARNAM J S, et al. Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types[J]. Sci Data, 2020, 7(1): 185. |
[33] | CHEN P J, ROJAS F R, HU X, et al. Pathomic features reveal immune and molecular evolution from lung preneoplasia to invasive adenocarcinoma[J]. Mod Pathol, 2023, 36(12): 100326. |
[34] |
WANG S D, WANG T, YANG L, et al. ConvPath: a software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network[J]. EBioMedicine, 2019, 50: 103-110.
doi: S2352-3964(19)30703-0 pmid: 31767541 |
[35] |
WANG S D, RONG R C, YANG D M, et al. Computational staining of pathology images to study the tumor microenvironment in lung cancer[J]. Cancer Res, 2020, 80(10): 2056-2066.
doi: 10.1158/0008-5472.CAN-19-1629 pmid: 31915129 |
[36] | DIAO J A, WANG J K, CHUI W F, et al. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes[J]. Nat Commun, 2021, 12(1): 1613. |
[37] | WANG H Y, XING F Y, SU H, et al. Novel image markers for non-small cell lung cancer classification and survival prediction[J]. BMC Bioinformatics, 2014, 15(1): 310. |
[38] |
YU K H, ZHANG C, BERRY G J, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features[J]. Nat Commun, 2016, 7: 12474.
doi: 10.1038/ncomms12474 |
[39] |
LUO X, ZANG X, YANG L, et al. Comprehensive computational pathological image analysis predicts lung cancer prognosis[J]. J Thorac Oncol, 2017, 12(3): 501-509.
doi: S1556-0864(16)31236-9 pmid: 27826035 |
[40] | LUO X, YIN S, YANG L, et al. Development and validation of a pathology image analysis-based predictive model for lung adenocarcinoma prognosis-a multi-cohort study[J]. Sci Rep, 2019, 9(1): 6886. |
[41] |
ALSUBAIE N M, SNEAD D, RAJPOOT N M. Tumour nuclear morphometrics predict survival in lung adenocarcinoma[J]. IEEE Access, 2021, 9: 12322-12331.
doi: 10.1109/Access.6287639 |
[42] | SALI R, JIANG Y M, ATTARANZADEH A, et al. Morphological diversity of cancer cells predicts prognosis across tumor types[J]. J Natl Cancer Inst, 2023: djad243. |
[43] | DIAO S H, CHEN P J, SHOWKATIAN E, et al. Automated cellular-level dual global fusion of whole-slide imaging for lung adenocarcinoma prognosis[J]. Cancers, 2023, 15(19): 4824. |
[44] | LEVY-JURGENSON A, TEKPLI X, KRISTENSEN V N, et al. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer[J]. Sci Rep, 2020, 10(1): 18802. |
[45] | PAN X P, LIN H, HAN C, et al. Computerized tumor-infiltrating lymphocytes density score predicts survival of patients with resectable lung adenocarcinoma[J]. iScience, 2022, 25(12): 105605. |
[46] | SHVETSOV N, GRØNNESBY M, PEDERSEN E, et al. A pragmatic machine learning approach to quantify tumor-infiltrating lymphocytes in whole slide images[J]. Cancers, 2022, 14(12): 2974. |
[47] | WANG X X, JANOWCZYK A, ZHOU Y, et al. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images[J]. Sci Rep, 2017, 7(1): 13543. |
[48] |
CORREDOR G, WANG X X, ZHOU Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer[J]. Clin Cancer Res, 2019, 25(5): 1526-1534.
doi: 10.1158/1078-0432.CCR-18-2013 pmid: 30201760 |
[49] | TERADA K, YOSHIZAWA A, LIU X Q, et al. Deep learning for predicting effect of neoadjuvant therapies in non-small cell lung carcinomas with histologic images[J]. Mod Pathol, 2023, 36(11): 100302. |
[50] |
PAN Y T, SHENG W, SHI L T, et al. Whole slide imaging-based deep learning to predict the treatment response of patients with non-small cell lung cancer[J]. Quant Imaging Med Surg, 2023, 13(6): 3547-3555.
doi: 10.21037/qims |
[51] | HU J, CUI C L, YANG W X, et al. Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images[J]. Transl Oncol, 2021, 14(1): 100921. |
[52] |
PARK S, OCK C Y, KIM H, et al. Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as complementary biomarker for immune checkpoint inhibition in non-small-cell lung cancer[J]. J Clin Oncol, 2022, 40(17): 1916-1928.
doi: 10.1200/JCO.21.02010 |
[53] |
EVANS H, SNEAD D. Why do errors arise in artificial intelligence diagnostic tools in histopathology and how can we minimize them?[J]. Histopathology, 2024, 84(2): 279-287.
doi: 10.1111/his.v84.2 |
[54] |
CAMPANELLA G, HANNA M G, GENESLAW L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8): 1301-1309.
doi: 10.1038/s41591-019-0508-1 pmid: 31308507 |
[55] |
XU X, HOU R, ZHAO W, et al. A weak supervision-based framework for automatic lung cancer classification on whole slide image[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 1372-1375.
doi: 10.1109/EMBC44109.2020.9176620 pmid: 33018244 |
[56] |
WINKLER J K, FINK C, TOBERER F, et al. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition[J]. JAMA Dermatol, 2019, 155(10): 1135-1141.
doi: 10.1001/jamadermatol.2019.1735 |
[57] | MARON R C, HEKLER A, KRIEGHOFF-HENNING E, et al. Reducing the impact of confounding factors on skin cancer classification via image segmentation: technical model study[J]. J Med Internet Res, 2021, 23(3): e21695. |
[58] |
PHAM H H N, FUTAKUCHI M, BYCHKOV A, et al. Detection of lung cancer lymph node metastases from whole-slide histopathologic images using a two-step deep learning approach[J]. Am J Pathol, 2019, 189(12): 2428-2439.
doi: S0002-9440(19)30718-7 pmid: 31541645 |
[59] |
HAO J, KOSARAJU S C, TSAKU N Z, et al. PAGE-net: Interpretable and integrative deep learning for survival analysis using histopathological images and genomic data[J]. Pac Symp Biocomput, 2020, 25: 355-366.
pmid: 31797610 |
[60] | ALVAREZ-JIMENEZ C, SANDINO A A, PRASANNA P, et al. Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: Preliminary results[J]. Cancers, 2020, 12(12): 3663. |
[61] |
WU S X, HONG G B, XU A B, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study[J]. Lancet Oncol, 2023, 24(4): 360-370.
doi: 10.1016/S1470-2045(23)00061-X pmid: 36893772 |
[62] |
ALATAKI A, ZABAGLO L, TOVEY H, et al. A simple digital image analysis system for automated Ki-67 assessment in primary breast cancer[J]. Histopathology, 2021, 79(2): 200-209.
doi: 10.1111/his.v79.2 |
[1] | 谭洪, 林圣庚, 熊毅. 人工智能赋能癌症协同药物组合预测的现状与挑战[J]. 中国癌症杂志, 2024, 34(9): 807-813. |
[2] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
[3] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[4] | 林艺聪, 王悦, 薛倩倩, 郑强, 金燕, 黄子凌, 李媛. EGFR T790M突变非小细胞肺癌患者的临床病理学、免疫微环境特征及对预后预测的意义[J]. 中国癌症杂志, 2024, 34(4): 368-379. |
[5] | 庄晗, 胡伟刚, 章真, 王佳舟. 基于深度学习算法的病理学图片淋巴细胞浸润检测[J]. 中国癌症杂志, 2024, 34(4): 409-417. |
[6] | 吴洪基, 王海霞, 汪玲, 罗小刚, 邹冬玲. 人工智能在类器官研究中的应用进展与挑战[J]. 中国癌症杂志, 2024, 34(2): 210-219. |
[7] | 吴晗, 杨章孺, 冯雯, 曾琬琴, 郭金栋, 李洪选, 王常禄, 王家明, 吕长兴, 张琴, 余雯, 蔡旭伟, 傅小龙. 多原发性早期肺癌立体定向放射治疗后疗效及患者预后分析[J]. 中国癌症杂志, 2023, 33(9): 844-856. |
[8] | 张玲玲, 王湘漪, 魏星, 林莉, 汤传昊, 梁军. 止吐用低频电刺激仪防治非小细胞肺癌患者化疗导致恶心呕吐的回顾性研究[J]. 中国癌症杂志, 2023, 33(8): 776-781. |
[9] | 张皓婷, 郑静, 傅梦姣, 周建英. 免疫治疗肺癌诱发甲状腺功能异常的研究进展[J]. 中国癌症杂志, 2023, 33(7): 701-706. |
[10] | 吴晶, 周娟, 苏春霞. 肺癌脂肪酸代谢重编程的研究进展[J]. 中国癌症杂志, 2023, 33(5): 517-526. |
[11] | 刘洋, 胡奕炀, 刘月平, 牛淑瑶, 丁平安, 田园, 郭洪海, 杨沛刚, 张泽, 郑涛, 檀碧波, 范立侨, 李勇, 赵群. 人工智能辅助技术在胃癌新辅助化疗患者HER2表达评估中的价值[J]. 中国癌症杂志, 2023, 33(4): 377-387. |
[12] | 苏春霞, 周彩存. 2022年度肺癌领域重要临床研究进展[J]. 中国癌症杂志, 2023, 33(3): 218-227. |
[13] | 沈洁, 刘雅静, 莫淼, 周瑾, 王泽洲, 周昌明, 周世崇, 常才, 郑莹. 人工智能辅助超声对中国女性乳腺病灶识别的有效性研究[J]. 中国癌症杂志, 2023, 33(11): 1002-1008. |
[14] | 邹淳缘, 许晓峰, 卢仁泉, 郭林. 肺癌组织和外周血中p53、PGP9.5、SOX2、GAGE7、GBU4-5和MAGE A1蛋白水平检测及其临床价值探讨[J]. 中国癌症杂志, 2023, 33(1): 36-44. |
[15] | 何丽媛, 王玉栋. ALK激酶域耐药突变的研究进展及未来应对策略[J]. 中国癌症杂志, 2022, 32(8): 736-746. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn