[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
doi: 10.1126/science.1102896
pmid: 15499015
|
[2] |
RAN H S, YIN J, LI H P. Editorial for the special issue on “boron nitride-based nanomaterials”[J]. Nanomaterials, 2023, 13(3): 584.
|
[3] |
YANG R J, FAN Y Y, ZHANG Y F, et al. 2D transition metal dichalcogenides for photocatalysis[J]. Angew Chem Int Ed, 2023, 62(13): e202218016.
|
[4] |
BORZOOEE MOGHADAM N, AVATEFI M, KARIMI M, et al. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications[J]. J Mater Chem B, 2023, 11(12): 2568-2613.
doi: 10.1039/d2tb01858f
pmid: 36883982
|
[5] |
KHARLAMOVA M V, KRAMBERGER C. Metal and metal halogenide-filled single-walled carbon nanotubes: kinetics, electronic properties, engineering the Fermi level[J]. Nanomaterials, 2022, 13(1): 180.
|
[6] |
POGORIELOV M, SMYRNOVA K, KYRYLENKO S, et al. MXenes-a new class of two-dimensional materials: structure, properties and potential applications[J]. Nanomaterials, 2021, 11(12): 3412.
|
[7] |
GOEL N, KUSHWAHA A, KUMAR M. Two-dimensional MXenes: recent emerging applications[J]. RSC Adv, 2022, 12(39): 25172-25193.
doi: 10.1039/d2ra04354h
pmid: 36199310
|
[8] |
LI H, FAN R R, ZOU B W, et al. Roles of MXenes in biomedical applications: recent developments and prospects[J]. J Nanobiotechnology, 2023, 21(1): 73.
|
[9] |
HUANG H Y, JIANG R M, FENG Y L, et al. Recent development and prospects of surface modification and biomedical applications of MXenes[J]. Nanoscale, 2020, 12(3): 1325-1338.
doi: 10.1039/c9nr07616f
pmid: 31872839
|
[10] |
SUN Z J, LI R, XI Q, et al. Single atom supported on MXenes for the alkaline hydrogen evolution reaction: species, coordination environment, and action mechanism[J]. Phys Chem Chem Phys, 2023, 25(19): 13728-13740.
doi: 10.1039/d3cp00779k
pmid: 37158387
|
[11] |
WU H, LU S Y, YANG B. Carbon-dot-enhanced electrocatalytic hydrogen evolution[J]. Acc Mater Res, 2022, 3(3): 319-330.
|
[12] |
LIN X P, LI Z J, QIU J M, et al. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field[J]. Biomater Sci, 2021, 9(16): 5437-5471.
|
[13] |
IRAVANI S, VARMA R S. MXenes for cancer therapy and diagnosis: recent advances and current challenges[J]. ACS Biomater Sci Eng, 2021, 7(6): 1900-1913.
doi: 10.1021/acsbiomaterials.0c01763
pmid: 33851823
|
[14] |
FADAHUNSI A A, LI C P, KHAN M I, et al. MXenes: state-of-the-art synthesis, composites and bioapplications[J]. J Mater Chem B, 2022, 10(23): 4331-4345.
|
[15] |
LEE I C, LI Y E, THOMAS J L, et al. Recent advances using MXenes in biomedical applications[J]. Mater Horiz, 2024, 11(4): 876-902.
doi: 10.1039/d3mh01588b
pmid: 38175543
|
[16] |
WANG D, ZHOU C K, FILATOV A S, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes[J]. Science, 2023, 379(6638): 1242-1247.
doi: 10.1126/science.add9204
pmid: 36952427
|
[17] |
LIN H, WANG Y W, GAO S S, et al. Theranostic 2D tantalum carbide (MXene)[J]. Adv Mater, 2020, 32(42): e2003085.
|
[18] |
ZHANG J B, TANG S, DING N, et al. Surface-modified Ti3C2 MXene nanosheets for mesenchymal stem cell osteogenic differentiation via photothermal conversion[J]. Nanoscale Adv, 2023, 5(11): 2921-2932.
|
[19] |
IRAVANI P, IRAVANI S, VARMA R S. MXene-chitosan composites and their biomedical potentials[J]. Micromachines, 2022, 13(9): 1383.
|
[20] |
ZHANG W J, LI S W, YAN Y Z, et al. Dual (pH- and ROS-)responsive antibacterial MXene-based nanocarrier for drug delivery[J]. Int J Mol Sci, 2022, 23(23): 14925.
|
[21] |
LUO W, LIU H X, LIU X, et al. Biocompatibility nanoprobe of MXene N-Ti3C2 quantum dot/Fe3+ for detection and fluorescence imaging of glutathione in living cells[J]. Colloids Surf B Biointerfaces, 2021, 201: 111631.
|
[22] |
NIE Y X, WANG P L, WANG S, et al. Accurate capture and identification of exosomes: nanoarchitecture of the MXene heterostructure/engineered lipid layer[J]. ACS Sens, 2023, 8(4): 1850-1857.
|
[23] |
WANG S, SONG W L, WEI S H, et al. Functional titanium carbide MXenes-loaded entropy-driven RNA explorer for long noncoding RNA PCA3 imaging in live cells[J]. Anal Chem, 2019, 91(13): 8622-8629.
doi: 10.1021/acs.analchem.9b02040
pmid: 31144498
|
[24] |
JIANG S S, LIN J, HUANG P. Nanomaterials for NIR-Ⅱ photoacoustic imaging[J]. Adv Healthc Mater, 2023, 12(16): e2202208.
|
[25] |
CHOI W, PARK B, CHOI S, et al. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges[J]. Chem Rev, 2023, 123(11): 7379-7419.
|
[26] |
YIN H H, GUAN X, LIN H, et al. Nanomedicine-enabled photonic thermogaseous cancer therapy[J]. Adv Sci, 2020, 7(2): 1901954.
|
[27] |
LIU Z, LIN H, ZHAO M L, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics, 2018, 8(6): 1648-1664.
doi: 10.7150/thno.23369
pmid: 29556347
|
[28] |
LIU Z, ZHAO M L, YU L D, et al. Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive T1 and T2 MRI-guided photonic breast-cancer hyperthermia in the NIR-Ⅱ biowindow[J]. Biomater Sci, 2022, 10(6): 1562-1574.
|
[29] |
GAO L P, YU J, LIU Y, et al. Tumor-penetrating peptide conjugated and doxorubicin loaded T1-T2 dual mode MRI contrast agents nanoparticles for tumor theranostics[J]. Theranostics, 2018, 8(1): 92-108.
|
[30] |
CAO J, ZHU B L, ZHENG K F, et al. Recent progress in NIR-Ⅱ contrast agent for biological imaging[J]. Front Bioeng Biotechnol, 2019, 7: 487.
|
[31] |
VASYUKOVA I A, ZAKHAROVA O V, KUZNETSOV D V, et al. Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: a review[J]. Nanomaterials, 2022, 12(11): 1797.
|
[32] |
SZUPLEWSKA A, KULPIŃSKA D, JAKUBCZAK M, et al. The 10th anniversary of MXenes: challenges and prospects for their surface modification toward future biotechnological applications[J]. Adv Drug Deliv Rev, 2022, 182: 114099.
|
[33] |
GUO Y P, WANG H S, FENG X, et al. 3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic/chemo combination therapy[J]. Nanotechnology, 2021, 32(19): 195701.
|
[34] |
XING C Y, CHEN S Y, LIANG X, et al. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity[J]. ACS Appl Mater Interfaces, 2018, 10(33): 27631-27643.
|
[35] |
HAN X X, HUANG J, LIN H, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer[J]. Adv Healthc Mater, 2018, 7(9): e1701394.
|
[36] |
RABIEE N, BAGHERZADEH M, JOUYANDEH M, et al. Natural polymers decorated MOF-MXene nanocarriers for co-delivery of doxorubicin/pCRISPR[J]. ACS Appl Bio Mater, 2021, 4(6): 5106-5121.
doi: 10.1021/acsabm.1c00332
pmid: 35007059
|
[37] |
WU Z, SHI J, SONG P G, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery[J]. Int J Biol Macromol, 2021, 183: 870-879.
doi: 10.1016/j.ijbiomac.2021.04.164
pmid: 33940062
|
[38] |
SZUPLEWSKA A, KULPIŃSKA D, DYBKO A, et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 874-886.
|
[39] |
LIN H, WANG X G, YU L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett, 2017, 17(1): 384-391.
doi: 10.1021/acs.nanolett.6b04339
pmid: 28026960
|
[40] |
PAN S S, YIN J H, YU L D, et al. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction[J]. Adv Sci, 2020, 7(2): 1901511.
|
[41] |
LIU Z, ZHAO M L, LIN H, et al. 2D magnetic titanium carbide MXene for cancer theranostics[J]. J Mater Chem B, 2018, 6(21): 3541-3548.
doi: 10.1039/c8tb00754c
pmid: 32254449
|
[42] |
LI Z L, ZHANG H, HAN J, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma[J]. Adv Mater, 2019, 31(27): e1902282.
|
[43] |
XU Y J, WANG Y W, AN J, et al. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy[J]. Bioact Mater, 2022, 14: 76-85.
doi: 10.1016/j.bioactmat.2021.12.011
pmid: 35310350
|
[44] |
GAZZI A, FUSCO L, KHAN A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics[J]. Front Bioeng Biotechnol, 2019, 7: 295.
|
[45] |
GAO W, ZHANG W H, YU H P, et al. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment[J]. Front Bioeng Biotechnol, 2022, 10: 996177.
|
[46] |
WANG H Y, SUN J J, LU L, et al. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1[J]. Anal Chim Acta, 2020, 1094: 18-25.
doi: S0003-2670(19)31199-7
pmid: 31761044
|
[47] |
LI C, ZHANG M M, ZHANG Z, et al. Microcantilever aptasensor for detecting epithelial tumor marker Mucin 1 and diagnosing human breast carcinoma MCF-7 cells[J]. Sens Actuat B Chem, 2019, 297: 126759.
|