中国癌症杂志 ›› 2024, Vol. 34 ›› Issue (9): 881-889.doi: 10.19401/j.cnki.1007-3639.2024.09.008
收稿日期:
2024-05-20
修回日期:
2024-09-12
出版日期:
2024-09-30
发布日期:
2024-10-11
通信作者:
吴炅(ORCID: 0000-0002-8103-0505),博士,主任医师,复旦大学附属肿瘤医院常务副院长。
作者简介:
徐睿(ORCID: 0009-0005-1908-0981),博士。
XU Rui(), WANG Zehao, WU Jiong(
)
Received:
2024-05-20
Revised:
2024-09-12
Published:
2024-09-30
Online:
2024-10-11
Contact:
WU Jiong
文章分享
摘要:
中性粒细胞起源于骨髓,由骨髓干细胞增殖分化形成,是血液循环中最常见的多形核白细胞,约占成人外周血白细胞总数的70%。中性粒细胞也是人体内寿命较短的细胞之一,正常成人外周血中性粒细胞半衰期仅数小时,依赖骨髓的不断补充维持中性粒细胞的数量稳定。作为固有免疫系统的短效效应细胞,中性粒细胞参与多种炎症和免疫过程,并构建抵抗感染的第一道防线,在激活和调节先天性及适应性免疫反应中发挥着至关重要的作用。虽然过去人们普遍认为中性粒细胞主要与急、慢性炎症和抗感染过程相关,而由于其寿命较短和不可增殖的特性,一度忽视了其在癌症中的作用。如今越来越多的研究表明,中性粒细胞在癌症中的作用远超以往的认知。乳腺癌是女性常见的恶性肿瘤之一,其发病率和死亡率均位居女性恶性肿瘤的前列。全球范围内乳腺癌的发病率逐年升高,严重威胁全世界女性的身心健康。最近有研究证实,肿瘤相关中性粒细胞(tumor-associated neutrophils,TANs)已成为肿瘤微环境(tumor microenvironment,TME)的重要组成部分,在乳腺癌的发生、发展和转移过程中均发挥重要作用。TANs是由多种肿瘤源性细胞因子相互作用,刺激诱导中性粒细胞募集至TME中积累形成的。中性粒细胞的强可塑性和多样性赋予TANs促进和抑制肿瘤的双重潜能。TANs可通过促进肿瘤生长和转移、推动肿瘤新生血管生成、免疫抑制和生成中性粒细胞胞外诱捕网(neutrophil extracellular traps,NET)来促进乳腺癌进展。反之,TANs也可通过直接杀伤肿瘤细胞和参与形成抗肿瘤的免疫网络间接介导抗肿瘤反应。TANs相关的乳腺癌治疗已逐步成为研究热点,尤其是在三阴性乳腺癌(triple-negative breast cancer,TNBC)中。本综述回顾乳腺癌中TANs起源、形成、分型和功能机制方面的研究进展,并详细阐述TANs与乳腺癌的临床相关性,进一步结合近期乳腺癌中TANs的相关临床研究,系统总结针对乳腺癌患者靶向TANs的治疗策略,以期为乳腺癌中TANs作用机制研究和乳腺癌治疗提供新思路。
中图分类号:
徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889.
XU Rui, WANG Zehao, WU Jiong. Advances in the role of tumor-associated neutrophils in the development of breast cancer[J]. China Oncology, 2024, 34(9): 881-889.
表1
不同肿瘤外周血中的中性粒细胞和TANs的表型和功能差异"
Type | Phenotype | Function |
---|---|---|
NI | Human: CD66b+, CD11b+, CD117+, CD10-, CD16int/low, LOX1+, CD84+, JAML+; Mouse: Ly6G+, CD11b+, CD117+, CD170low, CD101-, CD84+, JAML+ | Tumor immunosuppression |
N1 type | Human: CD66b+, CD11b+, CD101+ CD177+ (in CRC), CD54+, HLA-DR+, CD86+, CD15high; Mouse: CD11b+, CD177+ (in CRC), CD54+, CD16+, CD170low, Ly6G+ | Cytotoxicity; Inhibit tumor invasion |
N2 type | Human: CD11b+, CD66b+, CD170high, PD-L1-; Mouse: CD11b+, CD170high, Ly6G+, PD-L1+ | Tumor growth; Tumor metastasis; Angiogenesis; Immunosuppression |
NISG | Human: CD66b+, CD11b+, IFIT1, IRF7, RSAD2; Mouse: Ly6G+, CD11b+, IFIT1, IRF7, RSAD2 | Antiviral effect; Tumor immunity |
表2
TANs相关乳腺癌治疗靶点和机制"
Therapeutic mechanism | Target | Drug | Reference |
---|---|---|---|
⑴ Inhibit the infiltration of TANs | CXCR2 | Navarixin (CXCR2 inhibitor) | [ |
IL-8 | SB225002 (IL-8 inhibitor) | [ | |
SIRT1-Naged-NETs | [ | ||
Acod1 | [ | ||
⑵ Induce TANs polarization towards the N1 phenotype | TGF-β | SB525334 (TGF-β inhibitor) | [ |
IFN-β | IFN-βactivator | [ | |
FATP2 | Lipofermata (FATP2 inhibitor) | [ | |
E2 | MPP | [ | |
⑶ Inhibition of PD-1/PD-L1 checkpoint | Chi3l1 | [ |
[1] | NÉMETH T, SPERANDIO M, MÓCSAI A. Neutrophils as emerging therapeutic targets[J]. Nat Rev Drug Discov, 2020, 19(4): 253-275. |
[2] |
JAILLON S, PONZETTA A, MITRI D D, et al. Neutrophil diversity and plasticity in tumour progression and therapy[J]. Nat Rev Cancer, 2020, 20(9): 485-503.
doi: 10.1038/s41568-020-0281-y pmid: 32694624 |
[3] | CHEN S, ZHANG Q Y, LU L S, et al. Heterogeneity of neutrophils in cancer: one size does not fit all[J]. Cancer Biol Med, 2022, 19(12): 1629-1648. |
[4] |
BARRY S T, GABRILOVICH D I, SANSOM O J, et al. Therapeutic targeting of tumour myeloid cells[J]. Nat Rev Cancer, 2023, 23(4): 216-237.
doi: 10.1038/s41568-022-00546-2 pmid: 36747021 |
[5] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
[6] | SOTO-PEREZ-DE-CELIS E, CHAVARRI-GUERRA Y, LEON-RODRIGUEZ E, et al. Tumor-associated neutrophils in breast cancer subtypes[J]. Asian Pac J Cancer Prev, 2017, 18(10): 2689-2693. |
[7] |
HIDALGO A, CHILVERS E R, SUMMERS C, et al. The neutrophil life cycle[J]. Trends Immunol, 2019, 40(7): 584-597.
doi: S1471-4906(19)30102-4 pmid: 31153737 |
[8] |
FURZE R C, RANKIN S M. Neutrophil mobilization and clearance in the bone marrow[J]. Immunology, 2008, 125(3): 281-288.
doi: 10.1111/j.1365-2567.2008.02950.x pmid: 19128361 |
[9] | LEY K, HOFFMAN H M, KUBES P, et al. Neutrophils: new insights and open questions[J]. Sci Immunol, 2018, 3(30): eaat4579. |
[10] |
ADROVER J M, DEL FRESNO C, CRAINICIUC G, et al. A neutrophil timer coordinates immune defense and vascular protection[J]. Immunity, 2019, 51(5): 966-967.
doi: S1074-7613(19)30459-5 pmid: 31747583 |
[11] | LOH W, VERMEREN S. Anti-inflammatory neutrophil functions in the resolution of inflammation and tissue repair[J]. Cells, 2022, 11(24): 4076. |
[12] |
ALLEN S J, CROWN S E, HANDEL T M. Chemokine: receptor structure, interactions, and antagonism[J]. Annu Rev Immunol, 2007, 25: 787-820.
pmid: 17291188 |
[13] | FOUSEK K, HORN L A, PALENA C. Interleukin-8: a chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression[J]. Pharmacol Ther, 2021, 219: 107692. |
[14] | HE K, LIU X, HOFFMAN R D, et al. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors[J]. FEBS Open Bio, 2022, 12(7): 1268-1285. |
[15] |
XU Y L, YAN J X, TAO Y, et al. Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression[J]. Science, 2022, 377(6610): 1085-1091.
doi: 10.1126/science.abj2674 pmid: 35926007 |
[16] |
NOURSHARGH S, RENSHAW S A, IMHOF B A. Reverse migration of neutrophils: where, when, how, and why?[J]. Trends Immunol, 2016, 37(5): 273-286.
doi: S1471-4906(16)00044-2 pmid: 27055913 |
[17] | CORTEZ-RETAMOZO V, ETZRODT M, NEWTON A, et al. Origins of tumor-associated macrophages and neutrophils[J]. Proc Natl Acad Sci U S A, 2012, 109(7): 2491-2496. |
[18] | FRIDLENDER Z G, SUN J, KIM S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN[J]. Cancer Cell, 2009, 16(3): 183-194. |
[19] |
YU X Y, LI C H, WANG Z J, et al. Neutrophils in cancer: dual roles through intercellular interactions[J]. Oncogene, 2024, 43(16): 1163-1177.
doi: 10.1038/s41388-024-03004-5 pmid: 38472320 |
[20] |
POETA V M, MASSARA M, CAPUCETTI A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy[J]. Front Immunol, 2019, 10: 379.
doi: 10.3389/fimmu.2019.00379 pmid: 30894861 |
[21] | OHMS M, MÖLLER S, LASKAY T. An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro[J]. Front Immunol, 2020, 11: 532. |
[22] |
LIU S Y, WU W C, DU Y S, et al. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications[J]. Mol Cancer, 2023, 22(1): 148.
doi: 10.1186/s12943-023-01843-6 pmid: 37679744 |
[23] | CASBON A J, REYNAUD D, PARK C, et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils[J]. Proc Natl Acad Sci U S A, 2015, 112(6): E566-E575. |
[24] | QUE H Y, FU Q M, LAN T X, et al. Tumor-associated neutrophils and neutrophil-targeted cancer therapies[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188762. |
[25] | LIANG W, LI Q, FERRARA N. Metastatic growth instructed by neutrophil-derived transferrin[J]. Proc Natl Acad Sci U S A, 2018, 115(43): 11060-11065. |
[26] |
ZHAO Y, LIU Z S, LIU G Q, et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1[J]. Cell Metab, 2023, 35(10): 1688-1703.e10.
doi: 10.1016/j.cmet.2023.09.004 pmid: 37793345 |
[27] | MA T, TANG Y, WANG T L, et al. Chronic pulmonary bacterial infection facilitates breast cancer lung metastasis by recruiting tumor-promoting MHCⅡhi neutrophils[J]. Signal Transduct Target Ther, 2023, 8(1): 296. |
[28] | LI P S, LU M, SHI J Y, et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis[J]. Nat Immunol, 2020, 21(11): 1444-1455. |
[29] | NG M S F, KWOK I, TAN L, et al. Deterministic reprogramming of neutrophils within tumors[J]. Science, 2024, 383(6679): eadf6493. |
[30] | LI T J, JIANG Y M, HU Y F, et al. Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer[J]. Clin Cancer Res, 2017, 23(6): 1575-1585. |
[31] | LIU Z L, CHEN H H, ZHENG L L, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer[J]. Signal Transduct Target Ther, 2023, 8(1): 198. |
[32] |
KWANTWI L B, WANG S J, ZHANG W J, et al. Tumor-associated neutrophils activated by tumor-derived CCL20 (C-C motif chemokine ligand 20) promote T cell immunosuppression via programmed death-ligand 1 (PD-L1) in breast cancer[J]. Bioengineered, 2021, 12(1): 6996-7006.
doi: 10.1080/21655979.2021.1977102 pmid: 34519637 |
[33] |
SPIEGEL A, BROOKS M W, HOUSHYAR S, et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells[J]. Cancer Discov, 2016, 6(6): 630-649.
doi: 10.1158/2159-8290.CD-15-1157 pmid: 27072748 |
[34] | GONG Z, LI Q, SHI J Y, et al. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis[J]. Sci Immunol, 2023, 8(80): eadd5204. |
[35] | SHAO B Z, YAO Y, LI J P, et al. The role of neutrophil extracellular traps in cancer[J]. Front Oncol, 2021, 11: 714357. |
[36] |
MASUCCI M T, MINOPOLI M, DEL VECCHIO S, et al. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis[J]. Front Immunol, 2020, 11: 1749.
doi: 10.3389/fimmu.2020.01749 pmid: 33042107 |
[37] | ZHANG Y, GUO L P, DAI Q C, et al. A signature for pan-cancer prognosis based on neutrophil extracellular traps[J]. J Immunother Cancer, 2022, 10(6): e004210. |
[38] |
HSU B E, TABARIÈS S, JOHNSON R M, et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis[J]. Cell Rep, 2019, 27(13): 3902-3915.e6.
doi: S2211-1247(19)30730-2 pmid: 31242422 |
[39] |
WANG Y G, DING Y X, GUO N Z, et al. MDSCs: key criminals of tumor pre-metastatic niche formation[J]. Front Immunol, 2019, 10: 172.
doi: 10.3389/fimmu.2019.00172 pmid: 30792719 |
[40] |
TEIJEIRA Á, GARASA S, GATO M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.e8.
doi: S1074-7613(20)30089-3 pmid: 32289253 |
[41] |
TAIFOUR T, ATTALLA S S, ZUO D M, et al. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer[J]. Immunity, 2023, 56(12): 2755-2772.e8.
doi: 10.1016/j.immuni.2023.11.002 pmid: 38039967 |
[42] |
MOUSSET A, LECORGNE E, BOURGET I, et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation[J]. Cancer Cell, 2023, 41(4): 757-775.e10.
doi: 10.1016/j.ccell.2023.03.008 pmid: 37037615 |
[43] | SCHEDEL F, MAYER-HAIN S, PAPPELBAUM K I, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma[J]. Pigment Cell Melanoma Res, 2020, 33(1): 63-73. |
[44] |
FURUMAYA C, MARTINEZ-SANZ P, BOUTI P, et al. Plasticity in pro- and anti-tumor activity of neutrophils: Shifting the balance[J]. Front Immunol, 2020, 11: 2100.
doi: 10.3389/fimmu.2020.02100 pmid: 32983165 |
[45] |
GERSHKOVITZ M, CASPI Y, FAINSOD-LEVI T, et al. TRPM2 mediates neutrophil killing of disseminated tumor cells[J]. Cancer Res, 2018, 78(10): 2680-2690.
doi: 10.1158/0008-5472.CAN-17-3614 pmid: 29490946 |
[46] | AGGARWAL V, TULI H S, VAROL A, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements[J]. Biomolecules, 2019, 9(11): 735. |
[47] |
DENG D, SHAH K. TRAIL of hope meeting resistance in cancer[J]. Trends Cancer, 2020, 6(12): 989-1001.
doi: 10.1016/j.trecan.2020.06.006 pmid: 32718904 |
[48] |
CUI C, CHAKRABORTY K, TANG X A, et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis[J]. Cell, 2021, 184(12): 3163-3177.e21.
doi: 10.1016/j.cell.2021.04.016 pmid: 33964209 |
[49] |
PONZETTA A, CARRIERO R, CARNEVALE S, et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors[J]. Cell, 2019, 178(2): 346-360.e24.
doi: S0092-8674(19)30618-X pmid: 31257026 |
[50] |
WU Y C, MA J Q, YANG X P, et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency[J]. Cell, 2024, 187(6): 1422-1439.e24.
doi: 10.1016/j.cell.2024.02.005 pmid: 38447573 |
[51] | KAKUMOTO A, JAMIYAN T, KURODA H, et al. Prognostic impact of tumor-associated neutrophils in breast cancer[J]. Int J Clin Exp Pathol, 2024, 17(3): 51-62. |
[52] |
PU N, YIN H L, ZHAO G C, et al. Independent effect of postoperative neutrophil-to-lymphocyte ratio on the survival of pancreatic ductal adenocarcinoma with open distal pancreatosplenectomy and its nomogram-based prediction[J]. J Cancer, 2019, 10(24): 5935-5943.
doi: 10.7150/jca.35856 pmid: 31762803 |
[53] |
HUANG Z N, LI Z X, YAO Z C, et al. Clinical prognostic evaluation of immunocytes in different molecular subtypes of breast cancer[J]. J Cell Physiol, 2019, 234(11): 20584-20602.
doi: 10.1002/jcp.28662 pmid: 31016756 |
[54] | VON AU A, SHENCORU S, UHLMANN L, et al. Predictive value of neutrophil-to-lymphocyte-ratio in neoadjuvant-treated patients with breast cancer[J]. Arch Gynecol Obstet, 2023, 307(4): 1105-1113. |
[55] | ZHANG X, GE X, JIANG T, et al. Research progress on immunotherapy in triple-negative breast cancer (Review)[J]. Int J Oncol, 2022, 61(2): 95. |
[56] | HE J, ZHOU M X, YIN J, et al. METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration[J]. Mol Ther, 2021, 29(5): 1821-1837. |
[57] | LIN Q, FANG X L, LIANG G H, et al. Silencing CTNND1 mediates triple-negative breast cancer bone metastasis via upregulating CXCR4/CXCL12 axis and neutrophils infiltration in bone[J]. Cancers, 2021, 13(22): 5703. |
[58] | YANG C H, WANG Z, LI L L, et al. Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis[J]. J Immunother Cancer, 2021, 9(10): e002875. |
[59] | PENG H M, SHEN J, LONG X, et al. Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy[J]. Adv Sci, 2022, 9(10): e2105240. |
[60] |
YU R R, ZHU B, CHEN D G. Type I interferon-mediated tumor immunity and its role in immunotherapy[J]. Cell Mol Life Sci, 2022, 79(3): 191.
doi: 10.1007/s00018-022-04219-z pmid: 35292881 |
[61] | VEGLIA F, TYURIN V A, BLASI M, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer[J]. Nature, 2019, 569(7754): 73-78. |
[62] |
LINDE I L, PRESTWOOD T R, QIU J T, et al. Neutrophil-activating therapy for the treatment of cancer[J]. Cancer Cell, 2023, 41(2): 356-372.e10.
doi: 10.1016/j.ccell.2023.01.002 pmid: 36706760 |
[63] |
VAZQUEZ RODRIGUEZ G, ABRAHAMSSON A, JENSEN L D, et al. Estradiol promotes breast cancer cell migration via recruitment and activation of neutrophils[J]. Cancer Immunol Res, 2017, 5(3): 234-247.
doi: 10.1158/2326-6066.CIR-16-0150 pmid: 28159748 |
[64] | MINOR B M N, LEMOINE D, SEGER C, et al. Estradiol augments tumor-induced neutrophil production to promote tumor cell actions in lymphangioleiomyomatosis models[J]. Endocrinology, 2023, 164(6): bqad061. |
[65] | DAASSI D, MAHONEY K M, FREEMAN G J. The importance of exosomal PD-L1 in tumour immune evasion[J]. Nat Rev Immunol, 2020, 20(4): 209-215. |
[66] | WANG T T, ZHAO Y L, PENG L S, et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway[J]. Gut, 2017, 66(11): 1900-1911. |
[67] | KHOU S, POPA A, LUCI C, et al. Tumor-associated neutrophils dampen adaptive immunity and promote cutaneous squamous cell carcinoma development[J]. Cancers, 2020, 12(7): 1860. |
[68] | ZHAO Y, BAI Y S, SHEN M L, et al. Therapeutic strategies for gastric cancer targeting immune cells: future directions[J]. Front Immunol, 2022, 13: 992762. |
[69] | SUN R, XIONG Y Y, LIU H J, et al. Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis[J]. Transl Oncol, 2020, 13(10): 100825. |
[1] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[2] | 张剑. 关于女性乳腺癌患者绝经状态判断两个关键问题的临床思考[J]. 中国癌症杂志, 2024, 34(7): 619-627. |
[3] | 姜丹, 宋国庆, 王晓丹. 乳腺癌中线粒体功能障碍与CPT1A/ERK信号转导通路共同调节乳腺癌恶性行为的机制研究[J]. 中国癌症杂志, 2024, 34(7): 650-658. |
[4] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[5] | 廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远. 局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析[J]. 中国癌症杂志, 2024, 34(7): 669-679. |
[6] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[7] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
[8] | 董涧桥, 李坤艳, 李菁, 王斌, 王艳红, 贾红燕. SIRT3通过去乙酰化YME1L1诱导乳腺癌内分泌治疗耐药的作用机制研究[J]. 中国癌症杂志, 2024, 34(6): 537-547. |
[9] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
[10] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[11] | 辛美仪, 林玉红, 赵凯. 肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(5): 509-516. |
[12] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[13] | 薛驰, 高鹏, 朱志, 王振宁. 免疫治疗在胃癌的围手术期及转化治疗中的应用和挑战[J]. 中国癌症杂志, 2024, 34(3): 259-267. |
[14] | 陈亦凡, 李婷, 王碧芸. CCR8在肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(3): 299-305. |
[15] | 中国抗癌协会乳腺癌专业委员会. 中国早期乳腺癌卵巢功能抑制临床应用专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(3): 316-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn