[1] |
YEO S K, GUAN J L. Breast cancer: multiple subtypes within a tumor?[J]. Trends Cancer, 2017, 3(11): 753-760.
doi: S2405-8033(17)30175-9
pmid: 29120751
|
[2] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[3] |
LIU Y, ZHU X Z, XIAO Y, et al. Subtyping-based platform guides precision medicine for heavily pretreated metastatic triple-negative breast cancer: the FUTURE phase Ⅱ umbrella clinical trial[J]. Cell Res, 2023, 33(5): 389-402.
|
[4] |
HARBECK N, GNANT M. Breast cancer l[J]. Lancet, 2017, 389(10074): 1134-1150.
doi: S0140-6736(16)31891-8
pmid: 27865536
|
[5] |
OH D Y, BANG Y J. HER2-targeted therapies-a role beyond breast cancer[J]. Nat Rev Clin Oncol, 2020, 17: 33-48.
|
[6] |
TAPIA M, HERNANDO C, MARTÍNEZ M T, et al. Clinical impact of new treatment strategies for HER2-positive metastatic breast cancer patients with resistance to classical anti-HER therapies[J]. Cancers, 2023, 15(18): 4522.
|
[7] |
YE P, WANG Y R, LI R Q, et al. The HER family as therapeutic targets in colorectal cancer[J]. Crit Rev Oncol Hematol, 2022, 174: 103681.
|
[8] |
SCERRI J, SCERRI C, SCHÄFER-RUOFF F, et al. PKC-mediated phosphorylation and activation of the MEK/ERK pathway as a mechanism of acquired trastuzumab resistance in HER2-positive breast cancer[J]. Front Endocrinol, 2022, 13: 1010092.
|
[9] |
HARPER K L, SOSA M S, ENTENBERG D, et al. Mechanism of early dissemination and metastasis in HER2+ mammary cancer[J]. Nature, 2016, 540(7634): 588-592.
|
[10] |
LO P K, KANOJIA D, LIU X, et al. CD49f and CD61 identify HER2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFβ signaling[J]. Oncogene, 2012, 31(21): 2614-2626.
doi: 10.1038/onc.2011.439
pmid: 21996747
|
[11] |
NAMI B, WANG Z X. HER2 in breast cancer stemness: a negative feedback loop towards trastuzumab resistance[J]. Cancers, 2017, 9(5): 40.
|
[12] |
LUO Z, RONG Z Y, ZHANG J M, et al. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression[J]. Mol Cancer, 2020, 19(1): 86.
|
[13] |
WU Y Z, XIE Z A, CHEN J X, et al. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression[J]. Mol Cancer, 2019, 18(1): 73.
|
[14] |
LI J, MA M G, YANG X S, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to pertuzumab[J]. Mol Cancer, 2020, 19(1): 142.
|
[15] |
张帅, 夏文佳, 董高超, 等. 环状RNA分子circ_0007766通过上调细胞周期相关蛋白cyclin D1/cyclin E1/CDK4的表达促进肺腺癌细胞增殖[J]. 中国肺癌杂志, 2019, 22(5): 271-279.
|
|
ZHANG S, XIA W J, DONG G C, et al. Cyclic RNA molecule circ_0007766 promotes the proliferation of lung adenocarcinoma cells by up-regulating the expression of cyclin D1/cyclin E1/CDK4[J]. Chin J Lung Cancer, 2019, 22(5): 271-279.
|
[16] |
XU W G, ZHOU B, WU J, et al. Circular RNA hsa-circ-0007766 modulates the progression of Gastric Carcinoma via miR-1233-3p/GDF15 axis[J]. Int J Med Sci, 2020, 17(11): 1569-1583.
|
[17] |
GUO J, PAN H. Long non-coding RNA LINC01125 enhances cisplatin sensitivity of ovarian cancer via miR-1972[J]. Med Sci Monit, 2019, 25: 9844-9854.
|
[18] |
WANG S G, QIU J G, WANG L P, et al. Long non-coding RNA LINC01207 promotes prostate cancer progression by downregulating microRNA-1972 and upregulating LIM and SH3 protein 1[J]. IUBMB Life, 2020, 72(9): 1960-1975.
|
[19] |
WANG Y, ZENG X D, WANG N N, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma[J]. Mol Cancer, 2018, 17(1): 89.
|
[20] |
朱艺, 肖斌, 刘嘉慧, 等. Circ-0003910在HER2阳性乳腺癌中的表达、定位、生物学作用及蛋白质组学研究[J]. 中国癌症杂志, 2022, 32 (10): 979-989.
doi: 10.19401/j.cnki.1007-3639.2022.10.006
|
|
ZHU Y, XIAO B, LIU J H, et al. Expression, localization, biological role and proteomics study of circ-0003910 in HER2-positive breast cancer[J]. China Oncol, 2022, 32(10): 979-989.
|
[21] |
HUANG L, MA J, CUI M. Circular RNA hsa_circ_0001598 promotes programmed death-ligand-1-mediated immune escape and trastuzumab resistance via sponging miR-1184 in breast cancer cells[J]. Immunol Res, 2021, 69(6): 558-567.
doi: 10.1007/s12026-021-09237-w
pmid: 34559381
|
[22] |
HOSONAGA M, ARIMA Y, SUGIHARA E, et al. Effect of heterogeneity of HER2 expression on brain metastases of breast cancer[J]. J Clin Oncol, 2012, 30(15_suppl): 635.
|
[23] |
JORDAN N V, BARDIA A, WITTNER B S, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells[J]. Nature, 2016, 537: 102-106.
|
[24] |
JIN J, CAO J, LI B, et al. Landscape of DNA damage response gene alterations in breast cancer: a comprehensive investigation[J]. Cancer, 2023, 129(6): 845-859.
doi: 10.1002/cncr.34618
pmid: 36655350
|
[25] |
ZHANG P, ZHANG Q Y, TONG Z S, et al. Dalpiciclib plus letrozole or anastrozole versus placebo plus letrozole or anastrozole as first-line treatment in patients with hormone receptor-positive, HER2-negative advanced breast cancer (DAWNA-2): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2023, 24(6): 646-657.
|
[26] |
中国抗癌协会乳腺癌专业委员会,中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
doi: 10.19401/j.cnki.1007-3639.2023.12.004
|
|
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-Cancer Association (2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187.
|
[27] |
ZHENG Q P, BAO C Y, GUO W J, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215.
doi: 10.1038/ncomms11215
pmid: 27050392
|
[28] |
KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691.
doi: 10.1038/s41576-019-0158-7
pmid: 31395983
|
[29] |
WANG Q, WANG H Z, ZHAO X M, et al. Transcriptome sequencing of circular RNA reveals the involvement of hsa-SCMH1_0001 in the pathogenesis of Parkinson’s disease[J]. CNS Neurosci Ther, 2024, 30(3): e14435.
|
[30] |
LIU B Y, GONG Y J, JIANG Q Y, et al. Hsa_circ_0014784-induced YAP1 promoted the progression of pancreatic cancer by sponging miR-214-3p[J]. Cell Cycle, 2023, 22(13): 1583-1596.
|
[31] |
WANG X S, XING L, YANG R, et al. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC[J]. Mol Cancer, 2021, 20(1): 91.
|
[32] |
CAO L L, WANG M, DONG Y J, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2[J]. Cell Death Dis, 2020, 11(2): 145.
|
[33] |
GUO X Y, HE C X, WANG Y Q, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int, 2017, 2017: 5936171.
|
[34] |
KIRBY E, TSE W H, PATEL D, et al. First steps in the development of a liquid biopsy in situ hybridization protocol to determine circular RNA biomarkers in rat biofluids[J]. Pediatr Surg Int, 2019, 35(12): 1329-1338.
|