[1] |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.
|
[2] |
HE S Y, XIA C F, LI H, et al. Cancer profiles in China and comparisons with the USA: a comprehensive analysis in the incidence, mortality, survival, staging, and attribution to risk factors[J]. Sci China Life Sci, 2024, 67(1): 122-131.
|
[3] |
WANG Y A, YAN Q J, FAN C M, et al. Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526.
doi: 10.1007/s11427-022-2240-6
pmid: 37071289
|
[4] |
李天骄, 叶龙云, 金凯舟, 等. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12.
doi: 10.19401/j.cnki.1007-3639.2024.01.001
|
|
LI T J, YE L Y, JIN K Z, et al. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023[J]. China Oncol, 2024, 34(1): 1-12.
|
[5] |
HALBROOK C J, LYSSIOTIS C A, PASCA DI MAGLIANO M, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754.
doi: 10.1016/j.cell.2023.02.014
pmid: 37059070
|
[6] |
PORTELA A, ESTELLER M. Epigenetic modifications and human disease[J]. Nat Biotechnol, 2010, 28(10): 1057-1068.
doi: 10.1038/nbt.1685
pmid: 20944598
|
[7] |
EHRLICH M. DNA hypomethylation in cancer cells[J]. Epigenomics, 2009, 1(2): 239-259.
doi: 10.2217/epi.09.33
pmid: 20495664
|
[8] |
ZHAO Y H, YANG M, WANG S J, et al. An overview of epigenetic methylation in pancreatic cancer progression[J]. Front Oncol, 2022, 12: 854773.
|
[9] |
GOTOH M, ARAI E, WAKAI-USHIJIMA S, et al. Diagnosis and prognostication of ductal adenocarcinomas of the pancreas based on genome-wide DNA methylation profiling by bacterial artificial chromosome array-based methylated CpG island amplification[J]. J Biomed Biotechnol, 2011, 2011: 780836.
|
[10] |
BAYLIN S B, OHM J E. Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction?[J]. Nat Rev Cancer, 2006, 6: 107-116.
|
[11] |
HU J, OTHMANE B, YU A Z, et al. 5mC regulator-mediated molecular subtypes depict the hallmarks of the tumor microenvironment and guide precision medicine in bladder cancer[J]. BMC Med, 2021, 19(1): 289.
doi: 10.1186/s12916-021-02163-6
pmid: 34836536
|
[12] |
CHEMI F, PEARCE S P, CLIPSON A, et al. cfDNA methylome profiling for detection and subtyping of small cell lung cancers[J]. Nat Cancer, 2022, 3(10): 1260-1270.
|
[13] |
XIAO M J, LIANG X J, YAN Z M, et al. A DNA-methylation-driven genes based prognostic signature reveals immune microenvironment in pancreatic cancer[J]. Front Immunol, 2022, 13: 803962.
|
[14] |
PENG Y J, WU Q Y, WANG L X, et al. A DNA methylation signature to improve survival prediction of gastric cancer[J]. Clin Epigenetics, 2020, 12(1): 15.
doi: 10.1186/s13148-020-0807-x
pmid: 31959204
|
[15] |
ZHANG M, WANG Y L, WANG Y, et al. Integrative analysis of DNA methylation and gene expression to determine specific diagnostic biomarkers and prognostic biomarkers of breast cancer[J]. Front Cell Dev Biol, 2020, 8: 529386.
|
[16] |
LI W, BAI X Z, LI J, et al. The nucleoskeleton protein IFFO1 immobilizes broken DNA and suppresses chromosome translocation during tumorigenesis[J]. Nat Cell Biol, 2019, 21(10): 1273-1285.
doi: 10.1038/s41556-019-0388-0
pmid: 31548606
|
[17] |
ZHANG Y, QIU J G, JIA X Y, et al. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance[J]. Cancer Lett, 2023, 553: 215971.
|
[18] |
WERNER B, SJOQUIST K M, ESPINOZA D, et al. Cell-free DNA in plasma and ascites as a biomarker of bevacizumab response- a translational research sub-study of the REZOLVE (ANZGOG-1101) clinical trial[J]. Transl Oncol, 2024, 43: 101914.
|
[19] |
WERNER B, YUWONO N, DUGGAN J, et al. Cell-free DNA is abundant in ascites and represents a liquid biopsy of ovarian cancer[J]. Gynecol Oncol, 2021, 162(3): 720-727.
doi: 10.1016/j.ygyno.2021.06.028
pmid: 34454680
|
[20] |
YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
doi: 10.1089/omi.2011.0118
pmid: 22455463
|
[21] |
SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550.
doi: 10.1073/pnas.0506580102
pmid: 16199517
|
[22] |
HUMPHRIS J L, CHANG D K, JOHNS A L, et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer[J]. Ann Oncol, 2012, 23(7): 1713-1722.
doi: 10.1093/annonc/mdr561
pmid: 22241899
|
[23] |
ASAOKA T, MIYAMOTO A, MAEDA S, et al. Prognostic impact of preoperative NLR and CA19-9 in pancreatic cancer[J]. Pancreatology, 2016, 16(3): 434-440.
doi: 10.1016/j.pan.2015.10.006
pmid: 26852169
|
[24] |
KOCH A, JOOSTEN S C, FENG Z, et al. Analysis of DNA methylation in cancer: location revisited[J]. Nat Rev Clin Oncol, 2018, 15(7): 459-466.
doi: 10.1038/s41571-018-0004-4
pmid: 29666440
|
[25] |
LAIRD P W. The power and the promise of DNA methylation markers[J]. Nat Rev Cancer, 2003, 3(4): 253-266.
doi: 10.1038/nrc1045
pmid: 12671664
|
[26] |
BAYLIN S B, JONES P A. A decade of exploring the cancer epigenome-biological and translational implications[J]. Nat Rev Cancer, 2011, 11(10): 726-734.
|
[27] |
CABELLO-LOBATO M J, JENNER M, CISNEROS-AGUIRRE M, et al. Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining[J]. Nucleic Acids Res, 2022, 50(8): 4732-4754.
|
[28] |
GHOSH D, RAGHAVAN S C. Nonhomologous end joining: new accessory factors fine tune the machinery[J]. Trends Genet, 2021, 37(6): 582-599.
|