[1] |
SIEGEL R, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73: 17-48.
|
[2] |
MOORE A, DONAHUE T. Pancreatic cancer[J]. JAMA, 2019, 322(14): 1426.
doi: 10.1001/jama.2019.14699
pmid: 31593274
|
[3] |
ZHANG L F, WU J H, LING M T, et al. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses[J]. Mol Cancer, 2015, 14: 87.
doi: 10.1186/s12943-015-0361-x
pmid: 26022660
|
[4] |
TEMPERO M A, MALAFA M P, AL-HAWARY M, et al. Pancreatic adenocarcinoma, version 2.2017, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2017, 15(8): 1028-1061.
|
[5] |
VO T T T, FRUMAN D A. INPP4B is a tumor suppressor in the context of PTEN deficiency[J]. Cancer Discov, 2015, 5(7): 697-700.
|
[6] |
GEWINNER C, WANG Z C, RICHARDSON A, et al. Evidence that inositol polyphosphate 4-phosphatase type Ⅱ is a tumor suppressor that inhibits PI3K signaling[J]. Cancer Cell, 2009, 16(2): 115-125.
|
[7] |
DZNELADZE I, WOOLLEY J F, ROSSELL C, et al. SubID, a non-median dichotomization tool for heterogeneous populations, reveals the pan-cancer significance of INPP4B and its regulation by EVI1 in AML[J]. PLoS One, 2018, 13(2): e0191510.
|
[8] |
ZHAI S Y, LIU Y B, LU X X, et al. INPP4B as a prognostic and diagnostic marker regulates cell growth of pancreatic cancer via activating AKT[J]. Onco Targets Ther, 2019, 12: 8287-8299.
|
[9] |
ZHANG B, WANG W D, LI C H, et al. Inositol polyphosphate-4-phosphatase type Ⅱ plays critical roles in the modulation of cadherin-mediated adhesion dynamics of pancreatic ductal adenocarcinomas[J]. Cell Adh Migr, 2018, 12(6): 548-563.
|
[10] |
FARRELL A S, JOLY M M, ALLEN-PETERSEN B L, et al. MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance[J]. Nat Commun, 2017, 8(1): 1728.
doi: 10.1038/s41467-017-01967-6
pmid: 29170413
|
[11] |
SHAO F, HUANG M, MENG F T, et al. Circular RNA signature predicts gemcitabine resistance of pancreatic ductal adenocarcinoma[J]. Front Pharmacol, 2018, 9: 584.
doi: 10.3389/fphar.2018.00584
pmid: 29922161
|
[12] |
SAIKI Y, YOSHINO Y, FUJIMURA H, et al. DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells[J]. Biochem Biophys Res Commun, 2012, 421(1): 98-104.
|
[13] |
ZHOU J R, ZHANG L S, ZHENG H L, et al. Identification of chemoresistance-related mRNAs based on gemcitabine-resistant pancreatic cancer cell lines[J]. Cancer Med, 2020, 9(3): 1115-1130.
|
[14] |
SCHWARTZ L H, LITIÈRE S, DE VRIES E, et al. RECIST 1.1-Update and clarification: from the RECIST committee[J]. Eur J Cancer, 2016, 62: 132-137.
doi: 10.1016/j.ejca.2016.03.081
pmid: 27189322
|
[15] |
ZHANG X, ZHENG S Y, HU C H, et al. Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair[J]. Oncogene, 2022, 41(16): 2372-2389.
doi: 10.1038/s41388-022-02253-6
pmid: 35264742
|
[16] |
BILIMORIA K Y, BENTREM D J, KO C Y, et al. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the National Cancer Database[J]. Cancer, 2007, 110(4): 738-744.
doi: 10.1002/cncr.22852
pmid: 17580363
|
[17] |
RODGERS S J, OOMS L M, OORSCHOT V M J, et al. INPP4B promotes PI3Kα-dependent late endosome formation and Wnt/β-catenin signaling in breast cancer[J]. Nat Commun, 2021, 12(1): 3140.
doi: 10.1038/s41467-021-23241-6
pmid: 34035258
|
[18] |
CHEN Y, SUN Z Y, QI M, et al. INPP4B restrains cell proliferation and metastasis via regulation of the PI3K/AKT/SGK pathway[J]. J Cell Mol Med, 2018, 22(5): 2935-2943.
doi: 10.1111/jcmm.13595
pmid: 29516642
|
[19] |
TEMPERO M A, MALAFA M P, AL-HAWARY M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(4): 439-457.
|
[20] |
GROOT V P, REZAEE N, WU W C, et al. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma[J]. Ann Surg, 2018, 267(5): 936-945.
doi: 10.1097/SLA.0000000000002234
pmid: 28338509
|
[21] |
KANDA M, MATTHAEI H, WU J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia[J]. Gastroenterology, 2012, 142(4): 730-733.e9.
doi: 10.1053/j.gastro.2011.12.042
pmid: 22226782
|
[22] |
WADDELL N, PAJIC M, PATCH A M, et al. Whole genomes redefine the mutational landscape of pancreatic cancer[J]. Nature, 2015, 518(7540): 495-501.
|
[23] |
DAUER P, NOMURA A, SALUJA A, et al. Microenvironment in determining chemo-resistance in pancreatic cancer: neighborhood matters[J]. Pancreatology, 2017, 17(1): 7-12.
doi: S1424-3903(16)31256-X
pmid: 28034553
|
[24] |
BEATTY G L, EGHBALI S, KIM R. Deploying immunotherapy in pancreatic cancer: defining mechanisms of response and resistance[J]. Am Soc Clin Oncol Educ Book, 2017, 37: 267-278.
doi: 10.14694/EDBK_175232
pmid: 28561678
|
[25] |
GOLAN T, HAMMEL P, RENI M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer[J]. N Engl J Med, 2019, 381(4): 317-327.
|
[26] |
PISHVAIAN M J, BLAIS E M, BRODY J R, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial[J]. Lancet Oncol, 2020, 21(4): 508-518.
doi: S1470-2045(20)30074-7
pmid: 32135080
|
[27] |
MINI E, NOBILI S, CACIAGLI B, et al. Cellular pharmacology of gemcitabine[J]. Ann Oncol, 2006, 17(Suppl 5): v7-v12.
|
[28] |
ASLEH K, LYCK CARSTENSEN S, TYKJAER JØRGENSEN C L, et al. Basal biomarkers nestin and INPP4B predict gemcitabine benefit in metastatic breast cancer: samples from the phase Ⅲ SBG0102 clinical trial[J]. Int J Cancer, 2019, 144(10): 2578-2586.
|