[1] |
ZHANG X, LI J J, LU P H. Advances in the development of chimeric antigen receptor-T-cell therapy in B-cell acute lymphoblastic leukemia[J]. Chin Med J, 2020, 133(4): 474-482.
|
[2] |
PARK J H, GEYER M B, BRENTJENS R J. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date[J]. Blood, 2016, 127(26): 3312-3320.
doi: 10.1182/blood-2016-02-629063
pmid: 27207800
|
[3] |
MAROFI F, MOTAVALLI R, SAFONOV V A, et al. CAR T cells in solid tumors: challenges and opportunities[J]. Stem Cell Res Ther, 2021, 12(1): 81.
doi: 10.1186/s13287-020-02128-1
pmid: 33494834
|
[4] |
WAGNER J, WICKMAN E, DERENZO C, et al. CAR T cell therapy for solid tumors: bright future or dark reality?[J]. Mol Ther, 2020, 28(11): 2320-2339.
doi: 10.1016/j.ymthe.2020.09.015
pmid: 32979309
|
[5] |
RIGGI N, CIRONI L, PROVERO P, et al. Development of Ewing sarcoma from primary bone marrow-derived mesenchymal progenitor cells[J]. Cancer Res, 2005, 65(24): 11459-11468.
|
[6] |
RIGGI N, SUVÀ M L, SUVÀ D, et al. EWS-FLI-1 expression triggers a Ewing sarcoma initiation program in primary human mesenchymal stem cells[J]. Cancer Res, 2008, 68(7): 2176-2185.
|
[7] |
DESAI S S, JAMBHEKAR N A. Pathology of Ewing sarcoma/PNET: current opinion and emerging concepts[J]. Indian J Orthop, 2010, 44(4): 363-368.
|
[8] |
KALLEN M E, HORNICK J L. The 2020 WHO classification[J]. Am J Surg Pathol, 2020, 45(1): e1-e23.
|
[9] |
VAN MATER D, WAGNER L. Management of recurrent Ewing sarcoma: challenges and approaches[J]. Onco Targets Ther, 2019, 12: 2279-2288.
|
[10] |
BALDAUF M C, ORTH M F, DALLMAYER M, et al. Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets[J]. Oncotarget, 2018, 9(2): 1587-1601.
doi: 10.18632/oncotarget.20098
pmid: 29416716
|
[11] |
ROCCHI A, MANARA M C, SCIANDRA M, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis[J]. J Clin Invest, 2010, 120(3): 668-680.
doi: 10.1172/JCI36667
pmid: 20197622
|
[12] |
ZHANG S K, GU C J, HUANG L F, et al. The third-generation anti-CD30 CAR T-cells specifically homing to the tumor and mediating powerful antitumor activity[J]. Sci Rep, 2022, 12(1): 10488.
doi: 10.1038/s41598-022-14523-0
pmid: 35729339
|
[13] |
ELSALLAB M, LEVINE B L, WAYNE A S, et al. CAR T-cell product performance in haematological malignancies before and after marketing authorisation[J]. Lancet Oncol, 2020, 21(2): e104-e116.
doi: 10.1016/S1470-2045(19)30729-6
pmid: 32007196
|
[14] |
FEINS S, KONG W M, WILLIAMS E F, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer[J]. Am J Hematol, 2019, 94(S1): S3-S9.
|
[15] |
AHMED N, SALSMAN V S, YVON E, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression[J]. Mol Ther, 2009, 17(10): 1779-1787.
doi: 10.1038/mt.2009.133
pmid: 19532139
|
[16] |
ANDERS K, BLANKENSTEIN T. Molecular pathways: comparing the effects of drugs and T cells to effectively target oncogenes[J]. Clin Cancer Res, 2013, 19(2): 320-326.
doi: 10.1158/1078-0432.CCR-12-3017
pmid: 23197254
|
[17] |
SCIANDRA M, MARINO M T, MANARA M C, et al. CD99 drives terminal differentiation of osteosarcoma cells by acting as a spatial regulator of ERK 1/2[J]. J Bone Miner Res, 2014, 29(5): 1295-1309.
doi: 10.1002/jbmr.2141
pmid: 24677094
|
[18] |
BYUN H J, HONG I K, KIM E, et al. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways[J]. J Biol Chem, 2006, 281(46): 34833-34847.
|
[19] |
BACCAR A, FERCHICHI I, TROUDI W, et al. CD99 and HLA-Ⅱ immunostaining in breast cancer tissue and their correlation with lymph node metastasis[J]. Dis Markers, 2013, 34(5): 363-371.
|
[20] |
GOTO A, NIKI T, TERADO Y, et al. Prevalence of CD99 protein expression in pancreatic endocrine tumours (PETs)[J]. Histopathology, 2004, 45(4): 384-392.
pmid: 15469477
|
[21] |
CARDOSO L C, SOARES R D S, LAURENTINO T S, et al. CD99 expression in glioblastoma molecular subtypes and role in migration and invasion[J]. Int J Mol Sci, 2019, 20(5): 1137.
|
[22] |
PASELLO M, MANARA M C, SCOTLANDI K. CD99 at the crossroads of physiology and pathology[J]. J Cell Commun Signal, 2018, 12(1): 55-68.
doi: 10.1007/s12079-017-0445-z
pmid: 29305692
|
[23] |
SCOTLANDI K, BALDINI N, CERISANO V, et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors[J]. Cancer Res, 2000, 60(18): 5134-5142.
pmid: 11016640
|
[24] |
SHI J Z, ZHANG Z J, CEN H, et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity[J]. J Hematol Oncol, 2021, 14(1): 162.
|
[25] |
JIN J J, SABATINO M, SOMERVILLE R, et al. Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment[J]. J Immunother, 2012, 35(3): 283-292.
doi: 10.1097/CJI.0b013e31824e801f
pmid: 22421946
|
[26] |
BAJGAIN P, MUCHARLA R, WILSON J, et al. Optimizing the production of suspension cells using the G-Rex “M” series[J]. Mol Ther Methods Clin Dev, 2014, 1: 14015.
|
[27] |
GAGLIARDI C, KHALIL M, FOSTER A E. Streamlined production of genetically modified T cells with activation, transduction and expansion in closed-system G-Rex bioreactors[J]. Cytotherapy, 2019, 21(12): 1246-1257.
doi: S1465-3249(19)30867-9
pmid: 31837737
|
[28] |
LUDWIG J, HIRSCHEL M. Methods and process optimization for large-scale CAR T expansion using the G-rex cell culture platform[J]. Methods Mol Biol, 2020, 2086: 165-177.
doi: 10.1007/978-1-0716-0146-4_12
pmid: 31707675
|
[29] |
GARCIA-APONTE O F, HERWIG C, KOZMA B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy[J]. J Biol Eng, 2021, 15(1): 13.
|
[30] |
SALMERÓN A, BORROTO A, FRESNO M, et al. Transferrin receptor induces tyrosine phosphorylation in T cells and is physically associated with the TCR zeta-chain[J]. J Immunol, 1995, 154(4): 1675-1683.
pmid: 7836751
|
[31] |
LUM J B, INFANTE A J, MAKKER D M, et al. Transferrin synthesis by inducer T lymphocytes[J]. J Clin Invest, 1986, 77(3): 841-849.
pmid: 3005367
|
[32] |
MOTAMEDI M, XU L, ELAHI S. Correlation of transferrin receptor (CD71) with Ki67 expression on stimulated human and mouse T cells: the kinetics of expression of T cell activation markers[J]. J Immunol Methods, 2016, 437: 43-52.
doi: 10.1016/j.jim.2016.08.002
pmid: 27555239
|
[33] |
NGUYEN X D, EICHLER H, DUGRILLON A, et al. Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells[J]. J Immunol Methods, 2003, 275(1/2): 57-68.
|
[34] |
SCHWAB L, MICHEL G, BEIN G, et al. CD71 surface analysis of T cells: a simple alternative for extracorporeal photopheresis quality control[J]. Vox Sang, 2020, 115(1): 81-93.
doi: 10.1111/vox.12850
pmid: 31680273
|
[35] |
CHEN C, GU Y M, ZHANG F, et al. Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer[J]. Oncoimmunology, 2021, 10(1): 1901434.
|
[36] |
RATHMELL J C, VANDER HEIDEN M G, HARRIS M H, et al. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability[J]. Mol Cell, 2000, 6(3): 683-692.
doi: 10.1016/s1097-2765(00)00066-6
pmid: 11030347
|
[37] |
KRAUSS S, BRAND M D, BUTTGEREIT F. Signaling takes a breath: new quantitative perspectives on bioenergetics and signal transduction[J]. Immunity, 2001, 15(4): 497-502.
|
[38] |
JACKSON A L, MATSUMOTO H, JANSZEN M, et al. Restricted expression of p55 interleukin 2 receptor (CD25) on normal T cells[J]. Clin Immunol Immunopathol, 1990, 54(1): 126-133.
pmid: 2403487
|