摘要: 全切片数字化图像扫描技术的进步促成了数字病理学的诞生。随着存储技术的提高和互联网技术与计算机技术的迅速发展,深度学习的方法被广泛应用于病理学图像的分析中,其目标是化解病理学图像冗余复杂的信息导致病理学医师诊断和分析困难的问题,减轻病理学医师日常繁琐的分析工作,并提高分析结果的准确度。回顾分析常用于病理学分析的深度学习方法,介绍深度学习在病理学分析中各领域的应用,并讨论深度学习在病理学分析中的挑战和机遇。
杨 鑫 , 章 真 . 基于深度学习的人工智能在数字病理学中的进展[J]. 中国癌症杂志, 2021, 31(2): 151-155.
YANG Xin, ZHANG Zhen. Research progress of artificial intelligence based on deep learning in digital pathology[J]. China Oncology, 2021, 31(2): 151-155.