中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (1): 61-70.doi: 10.19401/j.cnki.1007-3639.2023.01.007
收稿日期:
2022-08-24
修回日期:
2022-10-24
出版日期:
2023-01-30
发布日期:
2023-02-13
通信作者:
苏春霞(ORCID: 0000-0003-1632-9487),博士,主任医师、教授。
作者简介:
陈瑛瑶(ORCID: 0000-0002-2804-0851),博士在读。
CHEN Yingyao(), CHU Xiangling, YU Xin, SU Chunxia()
Received:
2022-08-24
Revised:
2022-10-24
Published:
2023-01-30
Online:
2023-02-13
Contact:
SU Chunxia
摘要:
免疫检查点抑制剂(immune checkpoint inhibitor,ICI)的应用让肿瘤治疗取得了新突破,但不同患者接受免疫治疗后疗效差异较大,仅部分患者能够从中获益。通过检测一些生物标志物可以预测ICI的疗效,如程序性死亡[蛋白]配体-1(programmed death ligand-1,PD-L1)及肿瘤突变负荷(tumor mutation burden,TMB)等。除此之外,目前已有多项研究基于肿瘤患者的基因组学、转录组学或影像组学等数据,筛选多个生物标志物并建立免疫治疗效果相关预测模型。这类模型具备严谨的建立及验证流程,能够纳入更多肿瘤免疫相关变量,有助于提高对ICI疗效的预测能力。本文就肿瘤免疫治疗效果相关预测模型进行综述,以期为免疫治疗获益人群的筛选提供新思路。
中图分类号:
陈瑛瑶, 储香玲, 俞昕, 苏春霞. 免疫检查点抑制剂疗效相关预测模型的研究进展[J]. 中国癌症杂志, 2023, 33(1): 61-70.
CHEN Yingyao, CHU Xiangling, YU Xin, SU Chunxia. Advances in models predicting efficacy of immune checkpoint inhibitors[J]. China Oncology, 2023, 33(1): 61-70.
表1
ICI疗效相关预测模型汇总"
Author | Model type | Sample size | Data source | Research description | Validate |
---|---|---|---|---|---|
Bai, et al [ | Statistical model | NSCLC (n=316) | Tumor tissue | Developed a gene mutation marker model to predict the response of NSCLC patients to PD-1 inhibitor therapy | Internal+external |
Chowell, et al [ | Statistical model | NSCLC (n=538), melanoma (n=186), other (n=755) | Tumor tissue peripheral blood | Built a prognostic model based on genomics, clinical and demographic characteristics to predict the survival of patients receiving immunotherapy | Internal |
Gu, et al [ | Statistical model | HCC (n=365) | TCGA | Established a five-gene-based prognostic model based on the tumour immune microenvironment that can predict immunotherapy efficacy in HCC patients | Internal+external |
Dai, et al [ | Statistical model | HCC (n=365) | TCGA | Constructed an immune related gene based prognostic index, which can better predict the efficacy of immunotherapy for HCC patients | External |
Yi, et al [ | Statistical model | LUAD (n=497) | TCGA | Established a prognostic risk score model based on 17 immune related genes. Patients with low scores had a good prognosis after immunotherapy | Internal+external |
Hong, et al [ | Statistical model | Urothelial carcinoma(n=348) | EGA (EGAS#0000 1002556) | Built a risk stratification system based on 4 genes to predict the therapeutic response of ICIS in metastatic urothelial carcinoma | External |
Sun, et al [ | Statistical model | Kidney renal clear cell carcinoma (n=539) | TCGA | Established a prognostic risk scoring model based on six genes related to pyroptosis | Internal+external |
Zhang, et al [ | Statistical model | LUAD (n=1549) | TCGA | Conducted a comprehensive costimulatory molecule landscape analysis of patients with LUAD and built a model for prognosis and immunotherapy response prediction | Internal+external |
Xiang, et al [ | Statistical model | GC (n=6) | GEO (GSE112302) | Generate a prognostic risk score signature based on GC differentiation-related genes to predict overall survival | External |
Leader, et al [ | Statistical model | NSCLC (n=27) | Tumor tissue | Identified a cellular module called lung cancer activation model which is correlated with NSCLC response to immunotherapy | External |
Lu, et al [ | Statistical model | UCEC (n=488) | TCGA | Established a miRNA based diagnostic model and a prognostic model that can predict the prognosis and therapeutic responseof UCEC patients | Internal |
Gao, et al [ | Statistical model | GC (n=397) | TCGA | Built a prognostic model based on nine autophagy related lncRNA pairs for GC which can predict the efficacy of immunotherapy and chemotherapy | Internal |
Nabet, et al [ | Statistical model | NSCLC (n=99) | Peripheral blood | Built two predictive models through circulating tumor DNA and peripheral CD8 T cell levels | Internal+external |
Wei, et al [ | Statistical model | NSCLC (n=30), RCC (n=22), other (n=68) | Peripheral blood | Built a model based on dynamic peripheral blood immune cell markers monitoring | Internal |
Newell, et al [ | Statistical model | Melanoma (n=77) | Tumor tissue | Built a multivariable model combining the TMB and IFNg-related gene expression and robustly predicts response to immunotherapy | Internal+external |
He, et al [ | Statistical model | NSCLC (n=327) | CT | Developed an individual non-invasive biomarker that could distinguish high-TMB from low-TMB | Internal |
Mu, et al [ | Statistical model | NSCLC (n=697) | 18F-FDG PET/CT | Identified an effective and stable deeply learned score to measure PD-L1 expression status non-invasively | Internal+external |
Trebesch, et al [ | Statistical model | NSCLC (n=123), melanoma (n=80) | Contrast-enhanced CT | Provide a predictive machine learning model that could be used within the context of lesion response to treatment, patient treatment response, and response pattern characterization | Internal+external |
Liu, et al [ | Statistical model | NSCLC (n=46) | CT | Built a novel CT-based radiomics model that has the ability to predict the progression probability for patients with advanced NSCLC receiving nivolumab therapy | Internal |
Vaidya, et al [ | Statistical model | NSCLC (n=109) | CT | Developed a radiomic model using the integration of intratumoral and novel peritumoral texture and vessel tortuosity metrics | Internal+external |
Yang, et al [ | Statistical model | NSCLC (n=200) | CT | Offer a model which use multidimensional serial information with inputs from pretreatment clinical data, laboratory tests, and radiomics combined with deep learning | Internal |
Yang, et al [ | Statistical model | NSCLC (n=149) | CT | Established a radiomics model by combining CT image features and clinicopathological factors to predict the prognosis of immunotherapy | Internal |
Dercle, et al [ | Statistical model | Melanoma (n=575) | CT | Offer a prognostic model based on CT images at baseline and on first follow-up | Internal |
Nardone, et al [ | Statistical model | NSCLC (n=59) | CT | Built a model based on texture analysis to select NSCLC patients who may benefit by Nivolumab treatment | External |
Hinata, et al [ | Statistical model | GC (n=408) | Tumor tissue | Constructed a deep learning model based on tumor histopathological images to effectively stratify GC patients receiving immunotherapy | Internal+external |
Butner, et al [ | Mathe matical model | Present a mechanistic mathematical model of ICIs therapy to address the oncological need for early, broadly applicable readouts of patient response to immunotherapy |
[1] |
RIBAS A, WOLCHOK J D. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355.
doi: 10.1126/science.aar4060 pmid: 29567705 |
[2] |
VADDEPALLY R K, KHAREL P, PANDEY R, et al. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence[J]. Cancers (Basel), 2020, 12(3): 738.
doi: 10.3390/cancers12030738 |
[3] |
ZHANG Y Y, ZHANG Z M. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-821.
doi: 10.1038/s41423-020-0488-6 pmid: 32612154 |
[4] |
ZHU S M, ZHANG T, ZHENG L, et al. Combination strategies to maximize the benefits of cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 156.
doi: 10.1186/s13045-021-01164-5 |
[5] |
GALLUZZI L, HUMEAU J, BUQUÉ A, et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2020, 17(12): 725-741.
doi: 10.1038/s41571-020-0413-z |
[6] |
ROBERT C, RIBAS A, SCHACHTER J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study[J]. Lancet Oncol, 2019, 20(9): 1239-1251.
doi: S1470-2045(19)30388-2 pmid: 31345627 |
[7] |
O’DONNELL J S, TENG M W L, SMYTH M J. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(3): 151-167.
doi: 10.1038/s41571-018-0142-8 pmid: 30523282 |
[8] |
KALBASI A, RIBAS A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nat Rev Immunol, 2020, 20(1): 25-39.
doi: 10.1038/s41577-019-0218-4 pmid: 31570880 |
[9] |
WANG Y, TONG Z, ZHANG W H, et al. FDA-approved and emerging next generation predictive biomarkers for immune checkpoint inhibitors in cancer patients[J]. Front Oncol, 2021, 11: 683419.
doi: 10.3389/fonc.2021.683419 |
[10] |
ZHOU C B, ZHOU Y L, FANG J Y. Gut microbiota in cancer immune response and immunotherapy[J]. Trends Cancer, 2021, 7(7): 647-660.
doi: 10.1016/j.trecan.2021.01.010 |
[11] |
AHN S, CHUNG Y R, SEO A N, et al. Changes and prognostic values of tumor-infiltrating lymphocyte subsets after primary systemic therapy in breast cancer[J]. PLoS One, 2020, 15(5): e0233037.
doi: 10.1371/journal.pone.0233037 |
[12] |
ZHANG Q, LUO J, WU S, et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade[J]. Cancer Discov, 2020, 10(12): 1842-1853.
doi: 10.1158/2159-8290.CD-20-0047 pmid: 32816849 |
[13] |
DOROSHOW D B, BHALLA S, BEASLEY M B, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2021, 18(6): 345-362.
doi: 10.1038/s41571-021-00473-5 pmid: 33580222 |
[14] |
ZOUEIN J, KESROUANI C, KOURIE H R. PD-L1 expression as a predictive biomarker for immune checkpoint inhibitors: between a dream and a nightmare[J]. Immunotherapy, 2021, 13(12): 1053-1065.
doi: 10.2217/imt-2020-0336 pmid: 34190579 |
[15] |
COLLINS G S, REITSMA J B, ALTMAN D G, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. J Clin Epidemiol, 2015, 68(2): 134-143.
doi: 10.1016/j.jclinepi.2014.11.010 pmid: 25579640 |
[16] |
STEYERBERG E W, MOONS K G M, VAN DER WINDT D A, et al. Prognosis Research Strategy (PROGRESS) 3: prognostic model research[J]. PLoS Med, 2013, 10(2): e1001381.
doi: 10.1371/journal.pmed.1001381 |
[17] |
GRAY E P, TEARE M D, STEVENS J, et al. Risk prediction models for lung cancer: a systematic review[J]. Clin Lung Cancer, 2016, 17(2): 95-106.
doi: 10.1016/j.cllc.2015.11.007 pmid: 26712102 |
[18] |
KAMATH P S, WIESNER R H, MALINCHOC M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology, 2001, 33(2): 464-470.
doi: 10.1053/jhep.2001.22172 pmid: 11172350 |
[19] |
BAI X, WU D H, MA S C, et al. Development and validation of a genomic mutation signature to predict response to PD-1 inhibitors in non-squamous NSCLC: a multicohort study[J]. J Immunother Cancer, 2020, 8(1): e000381.
doi: 10.1136/jitc-2019-000381 |
[20] |
CHOWELL D, YOO S K, VALERO C, et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types[J]. Nat Biotechnol, 2022, 40(4): 499-506.
doi: 10.1038/s41587-021-01070-8 |
[21] |
DAI Y F, QIANG W J, LIN K Q, et al. An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2021, 70(4): 967-979.
doi: 10.1007/s00262-020-02743-0 pmid: 33089373 |
[22] |
GU X Y, GUAN J, XU J, et al. Model based on five tumour immune microenvironment-related genes for predicting hepatocellular carcinoma immunotherapy outcomes[J]. J Transl Med, 2021, 19(1): 26.
doi: 10.1186/s12967-020-02691-4 pmid: 33407546 |
[23] |
YI M, LI A P, ZHOU L H, et al. Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma[J]. Cancer Immunol Immunother, 2021, 70(6): 1705-1719.
doi: 10.1007/s00262-020-02817-z |
[24] |
HONG S, ZHANG Y M, CAO M M, et al. Hypoxic characteristic genes predict response to immunotherapy for urothelial carcinoma[J]. Front Cell Dev Biol, 2021, 9: 762478.
doi: 10.3389/fcell.2021.762478 |
[25] |
SUN Z L, JING C Y, GUO X D, et al. Comprehensive analysis of the immune infiltrates of pyroptosis in kidney renal clear cell carcinoma[J]. Front Oncol, 2021, 11: 716854.
doi: 10.3389/fonc.2021.716854 |
[26] |
ZHANG C Q, ZHANG Z H, SUN N, et al. Identification of a costimulatory molecule-based signature for predicting prognosis risk and immunotherapy response in patients with lung adenocarcinoma[J]. Oncoimmunology, 2020, 9(1): 1824641.
doi: 10.1080/2162402X.2020.1824641 |
[27] | XIANG R S, RONG Y P, GE Y H, et al. Cell differentiation trajectory predicts patient potential immunotherapy response and prognosis in gastric cancer[J]. Aging (Albany NY), 2021, 13(4): 5928-5945. |
[28] |
LEADER A M, GROUT J A, MAIER B B, et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification[J]. Cancer Cell, 2021, 39(12): 1594-1609.e12.
doi: 10.1016/j.ccell.2021.10.009 pmid: 34767762 |
[29] |
LU M, WU K H, TRUDEAU S, et al. A genomic signature for accurate classification and prediction of clinical outcomes in cancer patients treated with immune checkpoint blockade immunotherapy[J]. Sci Rep, 2020, 10(1): 20575.
doi: 10.1038/s41598-020-77653-3 pmid: 33239757 |
[30] | GAO L, XUE J, LIU X M, et al. A risk model based on autophagy-related lncRNAs for predicting prognosis and efficacy of immunotherapy and chemotherapy in gastric cancer patients[J]. Aging (Albany NY), 2021, 13(23): 25453-25465. |
[31] |
NABET B Y, ESFAHANI M S, MODING E J, et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition[J]. Cell, 2020, 183(2): 363-376.e13.
doi: 10.1016/j.cell.2020.09.001 pmid: 33007267 |
[32] |
WEI C, WANG M Y, GAO Q L, et al. Dynamic peripheral blood immune cell markers for predicting the response of patients with metastatic cancer to immune checkpoint inhibitors[J]. Cancer Immunol Immunother, 2023: 72(1): 23-37.
doi: 10.1007/s00262-022-03221-5 |
[33] |
NEWELL F, PIRES DA SILVA I, JOHANSSON P A, et al. Multiomic profiling of checkpoint inhibitor-treated melanoma: identifying predictors of response and resistance, and markers of biological discordance[J]. Cancer Cell, 2022, 40(1): 88-102.e7.
doi: 10.1016/j.ccell.2021.11.012 |
[34] |
HE B X, DONG D, SHE Y L, et al. Predicting response to immunotherapy in advanced non-small cell lung cancer using tumor mutational burden radiomic biomarker[J]. J Immunother Cancer, 2020, 8(2): e000550.
doi: 10.1136/jitc-2020-000550 |
[35] |
MU W, JIANG L, SHI Y, et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images[J]. J Immunother Cancer, 2021, 9(6): e002118.
doi: 10.1136/jitc-2020-002118 |
[36] |
TREBESCHI S, DRAGO S G, BIRKBAK N J, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers[J]. Ann Oncol, 2019, 30(6): 998-1004.
doi: S0923-7534(19)31202-5 pmid: 30895304 |
[37] |
LIU C, GONG J, YU H, et al. A CT-based radiomics approach to predict nivolumab response in advanced non-small cell lung cancer[J]. Front Oncol, 2021, 11: 544339.
doi: 10.3389/fonc.2021.544339 |
[38] |
VAIDYA P, BERA K, PATIL P D, et al. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade[J]. J Immunother Cancer, 2020, 8(2): e001343.
doi: 10.1136/jitc-2020-001343 |
[39] | YANG Y, YANG J C, SHEN L, et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small cell lung cancer[J]. Am J Transl Res, 2021, 13(2): 743-756. |
[40] |
YANG B, ZHOU L, ZHONG J, et al. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer[J]. Respir Res, 2021, 22(1): 189.
doi: 10.1186/s12931-021-01780-2 |
[41] |
DERCLE L, ZHAO B S, GÖNEN M, et al. Early readout on overall survival of patients with melanoma treated with immunotherapy using a novel imaging analysis[J]. JAMA Oncol, 2022, 8(3): 385-392.
doi: 10.1001/jamaoncol.2021.6818 pmid: 35050320 |
[42] |
NARDONE V, TINI P, PASTINA P, et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab[J]. Oncol Lett, 2020, 19(2): 1559-1566.
doi: 10.3892/ol.2019.11220 pmid: 31966081 |
[43] |
HINATA M, USHIKU T. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning[J]. Sci Rep, 2021, 11(1): 22636.
doi: 10.1038/s41598-021-02168-4 pmid: 34811485 |
[44] |
BUTNER J D, ELGANAINY D, WANG C X, et al. Mathematical prediction of clinical outcomes in advanced cancer patients treated with checkpoint inhibitor immunotherapy[J]. Sci Adv, 2020, 6(18): eaay6298.
doi: 10.1126/sciadv.aay6298 |
[45] |
JI R R, CHASALOW S D, WANG L S, et al. An immune-active tumor microenvironment favors clinical response to ipilimumab[J]. Cancer Immunol Immunother, 2012, 61(7): 1019-1031.
doi: 10.1007/s00262-011-1172-6 |
[46] |
JOHNSON D B, ESTRADA M V, SALGADO R, et al. Melanoma-specific MHC-Ⅱ expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy[J]. Nat Commun, 2016, 7: 10582.
doi: 10.1038/ncomms10582 |
[47] |
CHEN Q Y, ZHANG L, MO X K, et al. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 345-360.
doi: 10.1007/s00259-021-05509-7 |
[48] | WALSH R J, SOO R A. Resistance to immune checkpoint inhibitors in non-small cell lung cancer: biomarkers and therapeutic strategies[J]. Ther Adv Med Oncol, 2020, 12: 1758835920937902. |
[49] |
BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249.
doi: 10.1146/annurev-pathol-042020-042741 pmid: 33197221 |
[50] |
HOGG S J, BEAVIS P A, DAWSON M A, et al. Targeting the epigenetic regulation of antitumour immunity[J]. Nat Rev Drug Discov, 2020, 19(11): 776-800.
doi: 10.1038/s41573-020-0077-5 |
[51] |
CHEN J F, WU P, XIA R, et al. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy[J]. Mol Cancer, 2018, 17(1): 6.
doi: 10.1186/s12943-017-0756-y |
[52] |
KILGOUR E, ROTHWELL D G, BRADY G, et al. Liquid biopsy-based biomarkers of treatment response and resistance[J]. Cancer Cell, 2020, 37(4): 485-495.
doi: S1535-6108(20)30152-5 pmid: 32289272 |
[53] |
DERCLE L, CONNORS D E, TANG Y, et al. Vol-PACT: a foundation for the NIH public-private partnership that supports sharing of clinical trial data for the development of improved imaging biomarkers in oncology[J]. JCO Clin Cancer Inform, 2018, 2: 1-12.
doi: 10.1200/CCI.17.00137 pmid: 30652552 |
[54] |
SUN X Q, HU B. Mathematical modeling and computational prediction of cancer drug resistance[J]. Brief Bioinform, 2018, 19(6): 1382-1399.
doi: 10.1093/bib/bbx065 pmid: 28981626 |
[55] |
POLDRACK R A, HUCKINS G, VAROQUAUX G. Establishment of best practices for evidence for prediction: a review[J]. JAMA Psychiatry, 2020, 77(5): 534-540.
doi: 10.1001/jamapsychiatry.2019.3671 pmid: 31774490 |
[56] | BONNETT L J, SNELL K I E, COLLINS G S, et al. Guide to presenting clinical prediction models for use in clinical settings[J]. BMJ, 2019, 365: l737. |
[57] |
CHENG M L, PECTASIDES E, HANNA G J, et al. Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions[J]. CA Cancer J Clin, 2021, 71(2): 176-190.
doi: 10.3322/caac.21650 |
[58] |
IGNATIADIS M, SLEDGE G W, JEFFREY S S. Liquid biopsy enters the clinic-implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5): 297-312.
doi: 10.1038/s41571-020-00457-x |
[59] |
HORVAT T Z, ADEL N G, DANG T O, et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at memorial Sloan Kettering cancer center[J]. J Clin Oncol, 2015, 33(28): 3193-3198.
doi: 10.1200/JCO.2015.60.8448 pmid: 26282644 |
[1] | 邵志博, 杨犇龙, 吴炅. 2022年中国乳腺癌重要临床试验成果及最新进展[J]. 中国癌症杂志, 2023, 33(2): 103-109. |
[2] | 陈玉光, 孙晓, 毕钊, 邱鹏飞, 段宝伟, 樊庆达, 王永胜. 乳腺癌内乳前哨淋巴结活检评估预后及指导个体化内乳照射:一项长期随访研究[J]. 中国癌症杂志, 2023, 33(2): 142-151. |
[3] | 高鹤丽, 徐近, 虞先濬. 2021年胰腺神经内分泌肿瘤诊治的新进展[J]. 中国癌症杂志, 2022, 32(9): 772-778. |
[4] | 禹航, 刘文生, 张宁, 刘海宽, 陈洛海, 姚望, 范文哲, 李家平, 陈洁, 王于. 肝动脉栓塞术治疗囊性神经内分泌肿瘤肝转移的疗效及安全性分析[J]. 中国癌症杂志, 2022, 32(9): 794-799. |
[5] | 张日虹, 郭宇, 梁贇, 陈洛海, 陈洁, 王玮. 辅助化疗对胃神经内分泌癌患者预后的意义[J]. 中国癌症杂志, 2022, 32(9): 807-817. |
[6] | 肖玉铃, 朱秀之, 江一舟, 邵志敏. 三阴性乳腺癌精准治疗研究的新进展与未来展望[J]. 中国癌症杂志, 2022, 32(8): 669-679. |
[7] | 周文斌, 谢晖, 丁强, 王水. 在乳腺癌局部精准治疗中的新进展:联合免疫治疗未来可期[J]. 中国癌症杂志, 2022, 32(8): 698-704. |
[8] | 许宇辰, 程蕾蕾, 王妍, 林瑾仪, 陈佳慧, 陈怡帆, 周宇红, 刘天舒, 葛均波. sST2在免疫检查点抑制剂相关不良反应风险预测中的价值[J]. 中国癌症杂志, 2022, 32(8): 712-718. |
[9] | 曹孟轩, 胡灿, 张延强, 黄灵, 杜义安, 于鹏程, 章若岚, 徐志远, 程向东. 胃癌根治术后早期复发转移的危险因素分析[J]. 中国癌症杂志, 2022, 32(7): 588-595. |
[10] | 钱瑶(综述), 刘锋(审校). 乳腺癌新辅助内分泌治疗的研究进展及展望[J]. 中国癌症杂志, 2022, 32(7): 643-649. |
[11] | 刘彦权, 胡晓梅, 殷悦, 林霖, 沈建箴, 陈玉婷, 唐焕文. 器官移植术后淋巴组织增生性疾病的临床回顾性研究[J]. 中国癌症杂志, 2022, 32(7): 650-656. |
[12] | 苏春霞, 周彩存. 晚期非小细胞肺癌免疫治疗现状及未来方向[J]. 中国癌症杂志, 2022, 32(6): 478-486. |
[13] | 虞思来, 倪建佼, 朱正飞. 免疫治疗时代不可手术局部晚期非小细胞肺癌的治疗:现状与展望[J]. 中国癌症杂志, 2022, 32(6): 487-498. |
[14] | 曲以平, 侯鹏. 转移性儿童甲状腺癌的遗传学特征和预后[J]. 中国癌症杂志, 2022, 32(5): 373-379. |
[15] | 郭文婷, 慕转转, 李征, 张迎强, 靳晓娜, 林岩松. 可疑甲状腺球蛋白增高性分化型甲状腺癌患者经131I治疗后的临床转归[J]. 中国癌症杂志, 2022, 32(5): 410-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn