中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (1): 61-67.doi: 10.19401/j.cnki.1007-3639.2022.01.008
收稿日期:
2021-05-12
修回日期:
2021-08-05
出版日期:
2022-01-30
发布日期:
2022-01-30
通信作者:
张剑
E-mail:syner2000@163.com
JIN Yizi, LIN Mingxi, ZHANG Jian()
Received:
2021-05-12
Revised:
2021-08-05
Published:
2022-01-30
Online:
2022-01-30
Contact:
ZHANG Jian
E-mail:syner2000@163.com
文章分享
摘要:
DNA损伤应答(DNA damage response,DDR)缺陷是近年来乳腺癌治疗研究的热门靶点之一。DDR通路负责DNA损伤后的识别、信号转导和修复,其功能异常可导致细胞的凋亡或基因组不稳定性的增加。目前进入临床研究阶段的乳腺癌DDR靶向药物主要包括多聚腺苷二磷酸核糖聚合酶[poly (ADP-ribose) polymerase,PARP]抑制剂、ATM抑制剂、CHEK1抑制剂、ATR抑制剂及WEE1抑制剂等。主要从DDR缺陷的概念、以DDR作为靶点的基本原理、DDR各类靶向药物的临床研究现状及其在临床应用中的难点与挑战等方面展开综述。
中图分类号:
金奕滋, 林明曦, 张剑. DNA损伤应答缺陷作为乳腺癌治疗靶点的研究进展[J]. 中国癌症杂志, 2022, 32(1): 61-67.
JIN Yizi, LIN Mingxi, ZHANG Jian. Targeting DNA damage response deficiency in the treatment of breast cancer[J]. China Oncology, 2022, 32(1): 61-67.
表 1
除PARP抑制剂外进入临床研究阶段的主要DDR靶向药物"
Target | Role in DDR | Agent | Clinical trial number (phase) | Regimens in clinical trial |
---|---|---|---|---|
ATM | Checkpoint signaling | AZD-0156 | NCT02588105 (Ⅰ) | Monotherapy/combination with olaparib or chemotherapy or other |
ATR | Facilitates the stabilization of replication fork and restart | Ceralasertib (AZD-6738) | NCT03740893 (Ⅱ) | Monotherapy; neoadjuvant and adjuvant |
NCT04090567 (Ⅱ) | Combination with olaparib | |||
NCT03182634 (Ⅱ) | Combination with olaparib | |||
NCT04704661 (Ⅰ) | Combination with DS-8201a | |||
NCT03330847 (Ⅱ) | Combination with olaparib | |||
CHEK1 | Downstream effector kinase of ATR | Prexasertib (LY2606368) | NCT02203513 (Ⅱ) | Monotherapy |
NCT04032080 (Ⅱ) | Combination with DNA-PK inhibitor | |||
NCT02124148 (Ⅰ) | Combination with chemotherapy/targeted therapy | |||
NCT03495323 (Ⅰ) | Combination with PD-L1 inhibitor | |||
WEE1 | Checkpoint kinase negatively regulates entry into mitosis | Adavosertib (AZD-1775) | NCT03330847 (Ⅱ) | Combination with olaparib |
NCT03012477 (Ⅱ) | Combination with chemotherapy | |||
NCT02482311 (Ⅰ) | Monotherapy | |||
NCT02465060 (Ⅱ) | Monotherapy |
表 2
探索DDR靶向药物治疗TNBC的主要临床研究"
Agent | Study (phase) | Regimen | Clinical setting |
---|---|---|---|
PARP inhibitors | |||
Olaparib | PETREMAC NCT02624973 (Ⅱ) | Monotherapy | Neoadjuvant treatment for operable TNBC |
NCT02484404 (Ⅰ/Ⅱ) | Combination with PD-L1 inhibitor | Advanced/recurrent TNBC | |
NCT02498613 (Ⅱ) | Combination with VEGFR inhibitor | Advanced/metastatic TNBC | |
DORA NCT03167619 (Ⅱ) | Combination with PD-L1 inhibitor | Advanced/metastatic TNBC | |
Veliparib | NCT01306032 (Ⅱ) | Combination with chemotherapy | Metastatic TNBC |
BrighTNess NCT02032277 (Ⅲ) | Combination with chemotherapy | Neoadjuvant treatment for operable TNBC | |
Niraparib | KEYNOTE-162 NCT02657889 (Ⅱ) | Combination with PD-1 inhibitor | Advanced/metastatic TNBC |
Talazoparib | NCT03901469 (Ⅱ) | Combination with BET inhibitor | Advanced/metastatic TNBC |
ATR inhibitor | |||
Ceralasertib (AZD-6738) | NCT03740893 (Ⅱ) | Monotherapy | Neoadjuvant and adjuvant treatment for TNBC |
NCT03330847 (Ⅱ) | Combination with olaparib | Metastatic TNBC | |
CHEK1 inhibitor | |||
Prexasertib (LY2606368)+LY3023414 | NCT04032080 (Ⅱ) | Combination with DNA-PK inhibitor | Metastatic TNBC |
NCT02203513 (Ⅱ) | Monotherapy | Advanced TNBC | |
WEE1 inhibitor | |||
Adavosertib (AZD-1775) | NCT03012477 (Ⅱ) | Combination with chemotherapy | Metastatic TNBC |
NCT02482311 (Ⅰ) | Monotherapy | Advanced/metastatic TNBC |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
doi: 10.3322/caac.v68.6 |
[2] |
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5.
doi: 10.1016/j.ccell.2019.02.001 |
[3] |
BURSTEIN M D, TSIMELZON A, POAGE G M, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer[J]. Clin Cancer Res, 2015, 21(7): 1688-1698.
doi: 10.1158/1078-0432.CCR-14-0432 |
[4] |
LEHMANN B D, BAUER J A, CHEN X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7): 2750-2767.
doi: 10.1172/JCI45014 |
[5] |
KALIMUTHO M, PARSONS K, MITTAL D, et al. Targeted therapies for triple-negative breast cancer: combating a stubborn disease[J]. Trends Pharmacol Sci, 2015, 36(12): 822-846.
doi: 10.1016/j.tips.2015.08.009 |
[6] |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70.
doi: 10.1038/nature11412 |
[7] |
STAAF J, GLODZIK D, BOSCH A, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study[J]. Nat Med, 2019, 25(10): 1526-1533.
doi: 10.1038/s41591-019-0582-4 |
[8] |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013 |
[9] |
KLINAKIS A, KARAGIANNIS D, RAMPIAS T. Targeting DNA repair in cancer: current state and novel approaches[J]. Cell Mol Life Sci, 2020, 77(4): 677-703.
doi: 10.1007/s00018-019-03299-8 |
[10] |
PEARL L H, SCHIERZ A C, WARD S E, et al. Therapeutic opportunities within the DNA damage response[J]. Nat Rev Cancer, 2015, 15(3): 166-180.
doi: 10.1038/nrc3891 |
[11] |
FRIEDBERG E C. A brief history of the DNA repair field[J]. Cell Res, 2008, 18(1): 3-7.
doi: 10.1038/cr.2007.113 |
[12] | GOURLEY C, BALMAÑA J, LEDERMANN J A, et al. Moving from poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy[J]. J Clin Oncol, 2019, 37(25): 2257-2269. |
[13] |
CHARTRON E, THEILLET C, GUIU S, et al. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data[J]. Crit Rev Oncol Hematol, 2019, 133: 58-73.
doi: 10.1016/j.critrevonc.2018.10.012 |
[14] |
LUCCHESI J C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster[J]. Genetics, 1968, 59(1): 37-44.
doi: 10.1093/genetics/59.1.37 |
[15] |
DOBZHANSKY T. Genetics of natural populations; recombination and variability in populations of drosophila pseudoobscura[J]. Genetics, 1946, 31: 269-290.
pmid: 20985721 |
[16] |
PATEL A G, SARKARIA J N, KAUFMANN S H. Nonhomologous end joining drives poly (ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells[J]. Proc Natl Acad Sci USA, 2011, 108(8): 3406-3411.
doi: 10.1073/pnas.1013715108 |
[17] |
WILLIAMSON C T, KUBOTA E, HAMILL J D, et al. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53[J]. EMBO Mol Med, 2012, 4(6): 515-527.
doi: 10.1002/emmm.v4.6 |
[18] |
CECCALDI R, LIU J C, AMUNUGAMA R, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair[J]. Nature, 2015, 518(7538): 258-262.
doi: 10.1038/nature14184 |
[19] |
MURAI J, HUANG S Y, DAS B B, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors[J]. Cancer Res, 2012, 72(21): 5588-5599.
doi: 10.1158/0008-5472.CAN-12-2753 |
[20] |
MURAI J, ZHANG Y P, MORRIS J, et al. Rationale for poly (ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition[J]. J Pharmacol Exp Ther, 2014, 349(3): 408-416.
doi: 10.1124/jpet.113.210146 |
[21] |
KIM C, WANG X D, YU Y H. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response[J]. Elife, 2020, 9: e60637.
doi: 10.7554/eLife.60637 |
[22] |
BAKR A, OING C, KÖCHER S, et al. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation[J]. Nucleic Acids Res, 2015, 43(6): 3154-3166.
doi: 10.1093/nar/gkv160 |
[23] | SALDIVAR J C, CORTEZ D, CIMPRICH K A. The essential kinase ATR: ensuring faithful duplication of a challenging genome[J]. Nat Rev Mol Cell Biol, 2017, 18(10): 622-636. |
[24] |
GHELLI LUSERNA DI RORÀ A, CERCHIONE C, MARTINELLI G, et al. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target[J]. J Hematol Oncol, 2020, 13(1): 126.
doi: 10.1186/s13045-020-00959-2 |
[25] |
YUE X Q, BAI C J, XIE D F, et al. DNA-PKcs: a multi-faceted player in DNA damage response[J]. Front Genet, 2020, 11: 607428.
doi: 10.3389/fgene.2020.607428 |
[26] |
WANG Z, SONG Y D, LI S B, et al. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse[J]. J Biol Chem, 2019, 294(11): 3909-3919.
doi: 10.1074/jbc.RA118.005188 |
[27] |
ROBSON M, IM S A, SENKUS E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377(6): 523-533.
doi: 10.1056/NEJMoa1706450 |
[28] |
ROBSON M E, TUNG N, CONTE P, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4): 558-566.
doi: 10.1093/annonc/mdz012 |
[29] |
LITTON J K, RUGO H S, ETTL J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med, 2018, 379(8): 753-763.
doi: 10.1056/NEJMoa1802905 |
[30] |
TUNG N M, ROBSON M E, VENTZ S, et al. TBCRC 048: a phase Ⅱ study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (olaparib expanded)[J]. J Clin Oncol, 2020, 38(15_suppl): 1002.
doi: 10.1200/JCO.2020.38.15_suppl.1002 |
[31] |
FASCHING P A, LINK T, HAUKE J, et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study)[J]. Ann Oncol, 2021, 32(1): 49-57.
doi: 10.1016/j.annonc.2020.10.471 |
[32] |
LOIBL S, O'SHAUGHNESSY J, UNTCH M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(4): 497-509.
doi: 10.1016/S1470-2045(18)30111-6 |
[33] |
EIKESDAL H P, YNDESTAD S, ELZAWAHRY A, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer[J]. Ann Oncol, 2021, 32(2): 240-249.
doi: 10.1016/j.annonc.2020.11.009 |
[34] | GATTI-MAYS M E, KARZAI F H, SOLTANI S N, et al. A phase Ⅱ single arm pilot study of the CHK1 inhibitor prexasertib (LY2606368) in BRCA wild-type, advanced triple-negative breast cancer[J]. Oncologist, 2020, 25(12): e1013-e1824. |
[35] |
MATEO J, LORD C J, SERRA V, et al. A decade of clinical development of PARP inhibitors in perspective[J]. Ann Oncol, 2019, 30(9): 1437-1447.
doi: 10.1093/annonc/mdz192 |
[36] |
FEDERICI G, SODDU S. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers[J]. J Exp Clin Cancer Res, 2020, 39(1): 46.
doi: 10.1186/s13046-020-01554-6 |
[37] | BORG A, HAILE R W, MALONE K E, et al. Characterization of BRCA1 and BRCA2 deleterious mutations and variants of unknown clinical significance in unilateral and bilateral breast cancer: the WECARE study[J]. Hum Mutat, 2010, 31(3): E1200-E1240. |
[38] |
MILLOT G A, CARVALHO M A, CAPUTO S M, et al. A guide for functional analysis of BRCA1 variants of uncertain significance[J]. Hum Mutat, 2012, 33(11): 1526-1537.
doi: 10.1002/humu.v33.11 |
[39] |
TOLAND A E, ANDREASSEN P R. DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment[J]. J Med Genet, 2017, 54(11): 721-731.
doi: 10.1136/jmedgenet-2017-104707 |
[40] | ADZHUBEI I A, SCHMIDT S, PESHKIN L, et al. A method and server for predicting damaging missense mutations[J]. Nat Methods, 2010, 7(4): 248-249. |
[41] |
NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function[J]. Nucleic Acids Res, 2003, 31(13): 3812-3814.
doi: 10.1093/nar/gkg509 |
[42] |
FINDLAY G M, DAZA R M, MARTIN B, et al. Accurate classification of BRCA1 variants with saturation genome editing[J]. Nature, 2018, 562(7726): 217-222.
doi: 10.1038/s41586-018-0461-z |
[1] | 王稚晴, 刘西禹, 范蕾. 早期乳腺癌辅助治疗的进展和争议[J]. 中国癌症杂志, 2025, 35(3): 255-262. |
[2] | 王小波, 王涛. 2024年度晚期乳腺癌共识与争议的现状及展望[J]. 中国癌症杂志, 2025, 35(3): 263-272. |
[3] | 李彬, 陶中华, 胡夕春. CDK4/6抑制剂后时代下的乳腺癌精准诊疗[J]. 中国癌症杂志, 2025, 35(3): 273-282. |
[4] | 吴春晓, 庞怡, 顾凯, 颜佳颖, 王春芳, 向詠梅, 施燕. 2002—2017年上海市女性乳腺癌生存分析[J]. 中国癌症杂志, 2025, 35(3): 291-297. |
[5] | 赵锴乐, 王磊, 耿健雄, 崔成伟, 于雁. 恶性胸膜间皮瘤治疗的研究现状与展望[J]. 中国癌症杂志, 2025, 35(3): 326-332. |
[6] | 安天棋, 田建辉, 周奕阳, 罗斌, 阙祖俊, 刘瑶, 于盼, 赵瑞华, 杨蕴. 免疫检查点抑制剂治疗相关胸腔积液的研究进展[J]. 中国癌症杂志, 2025, 35(3): 333-338. |
[7] | 卢愚风, 王晗, 谢亦璠, 江一舟, 邵志敏. 中国乳腺癌重要基础转化研究——进展与展望[J]. 中国癌症杂志, 2025, 35(2): 143-153. |
[8] | 林佳琳, 王文娜, 徐兵河. 抗体药物偶联物在乳腺癌领域的研究现状与展望[J]. 中国癌症杂志, 2025, 35(2): 154-166. |
[9] | 杨鑫, 史钱枫, 刘强. 2024年中国乳腺癌重要临床研究成果[J]. 中国癌症杂志, 2025, 35(2): 167-175. |
[10] | 黎星, 彭子琪, 于鑫淼, 金锋. 2024年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2025, 35(2): 176-185. |
[11] | 吴淞, 袁洋, 江泽飞. 2024年改变晚期乳腺癌临床实践的重要研究进展[J]. 中国癌症杂志, 2025, 35(2): 186-194. |
[12] | 曾成, 王沅怡, 王佳妮, 马飞. 乳腺癌免疫检查点抑制剂治疗的研究进展与探索方向[J]. 中国癌症杂志, 2025, 35(2): 195-204. |
[13] | 李俊杰. 早期乳腺癌局部治疗与全身治疗的进展与展望[J]. 中国癌症杂志, 2025, 35(2): 205-212. |
[14] | 王青, 俞育帅, 王晨曦, 姜子荣, 李佳璐, 唐诗聪, 宋传贵. 三级淋巴结构异质性在三阴性乳腺癌新辅助治疗中的预测作用及免疫微环境特征的研究现状与展望[J]. 中国癌症杂志, 2025, 35(2): 213-218. |
[15] | 逯永晋, 石志强, 李彤, 王永胜, 邱鹏飞. 乳腺癌前哨淋巴结阳性豁免腋窝清扫后区域淋巴结放疗的回顾性研究[J]. 中国癌症杂志, 2025, 35(2): 228-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn