[1] |
YANG M H, ZHANG Y Z, LIU G P, et al. TIPE1 inhibits osteosarcoma tumorigenesis and progression by regulating PRMT1 mediated STAT3 arginine methylation[J]. Cell Death Dis, 2022, 13(9): 815.
doi: 10.1038/s41419-022-05273-y
pmid: 36151091
|
[2] |
HU W, FENG C M, LIU L Y, et al. TIPE1 inhibits breast cancer proliferation by downregulating ERK phosphorylation and predicts a favorable prognosis[J]. Front Oncol, 2019, 9: 400.
doi: 10.3389/fonc.2019.00400
pmid: 31179241
|
[3] |
LOU Y W, TIAN X Q, SUN C, et al. TNFAIP8 protein functions as a tumor suppressor in inflammation-associated colorectal tumorigenesis[J]. Cell Death Dis, 2022, 13(4): 311.
doi: 10.1038/s41419-022-04769-x
pmid: 35387985
|
[4] |
TIAN M J, YANG L, ZHAO Z Q, et al. TIPE drives a cancer stem-like phenotype by promoting glycolysis via PKM2/HIF-1α axis in melanoma[J]. eLife, 2024, 13: RP92741.
|
[5] |
HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
|
[6] |
MA L F, XU L L, YUAN L J, et al. Discovery of NO donor-aurovertin hybrids as dual ferroptosis and apoptosis inducers for treating triple-negative breast cancer[J]. J Med Chem, 2024, 67(15): 13089-13105.
|
[7] |
SUN X H, VERMA S P, JIA G C, et al. Case-case genome-wide analyses identify subtype-informative variants that confer risk for breast cancer[J]. Cancer Res, 2024, 84(15): 2533-2548.
doi: 10.1158/0008-5472.CAN-23-3854
pmid: 38832928
|
[8] |
YANG F, XIAO Y, DING J H, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metab, 2023, 35(1): 84-100.e8.
|
[9] |
FENDT S M. 100 years of the Warburg effect: a cancer metabolism endeavor[J]. Cell, 2024, 187(15): 3824-3828.
|
[10] |
DU Y, WEI N, MA R L, et al. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer[J]. Cell Death Dis, 2020, 11(9): 731.
doi: 10.1038/s41419-020-02952-6
pmid: 32908121
|
[11] |
YU Y H, DENG H F, WANG W W, et al. LRPPRC promotes glycolysis by stabilising LDHA mRNA and its knockdown plus glutamine inhibitor induces synthetic lethality via m6 A modification in triple-negative breast cancer[J]. Clin Transl Med, 2024, 14(2): e1583.
|
[12] |
HE L, LV S N, MA X J, et al. ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis[J]. Med Oncol, 2022, 39(4): 45.
|
[13] |
CUI J J, SHI M, XIE D C, et al. FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression[J]. Clin Cancer Res, 2014, 20(10): 2595-2606.
|
[14] |
DAI H J, XU W T, WANG L L, et al. Loss of SPRY2 contributes to cancer-associated fibroblasts activation and promotes breast cancer development[J]. Breast Cancer Res, 2023, 25(1): 90.
doi: 10.1186/s13058-023-01683-8
pmid: 37507768
|
[15] |
AN Y J, JO S, KIM J M, et al. Lactate as a major epigenetic carbon source for histone acetylation via nuclear LDH metabolism[J]. Exp Mol Med, 2023, 55(10): 2238-2247.
|
[16] |
LIU S G, XIANG Y N, WANG B S, et al. USP1 promotes the aerobic glycolysis and progression of T-cell acute lymphoblastic leukemia via PLK1/LDHA axis[J]. Blood Adv, 2023, 7(13): 3099-3112.
|