[1] |
QIU X X, WU Q D, ZHANG Y Y, et al. Geriatric nutritional risk index and mortality from all-cause, cancer, and non-cancer in US cancer survivors: NHANES 2001-2018[J]. Front Oncol, 2024, 14: 1399957.
|
[2] |
BÁLINTOVÁ L, MATÚŠKOVÁ M, GÁBELOVÁ A. The evaluation of the efficacy and potential genotoxic hazard of combined SAHA and 5-FU treatment in the chemoresistant colorectal cancer cell lines[J]. Mutat Res Genet Toxicol Environ Mutagen, 2022, 874/875: 503445.
|
[3] |
RIVA G, CRAVERO E, PIZZO C, et al. Sinonasal side effects of chemotherapy and/or radiation therapy for head and neck cancer: a literature review[J]. Cancers (Basel), 2022, 14(9): 2324.
|
[4] |
任磊, 程科满, 张强, 等. 病毒样颗粒在肿瘤治疗中的研究进展[J]. 厦门大学学报(自然科学版), 2021, 60(2): 306-314.
|
|
REN L, CHENG K M, ZHANG Q, et al. Research progress of virus-like particles in tumor therapy[J]. J Xiamen Univ Nat Sci, 2021, 60(2): 306-314.
|
[5] |
QIAN C Y, LIU X L, XU Q, et al. Recent progress on the versatility of virus-like particles[J]. Vaccines (Basel), 2020, 8(1): 139.
|
[6] |
YUAN B C, LIU Y, LV M L, et al. Virus-like particle-based nanocarriers as an emerging platform for drug delivery[J]. J Drug Target, 2023, 31(5): 433-455.
|
[7] |
舒星富, 陈遥, 马小梅, 等. 基于病毒样颗粒的癌症疫苗研究进展[J]. 中国免疫学杂志, 2024, 40(8): 1590-1594.
|
|
SHU X F, CHEN Y, MA X M, et al. Research progress of cancer vaccines based on virus-like particles[J]. Chin J Immunol, 2024, 40(8): 1590-1594.
|
[8] |
JEEVANANDAM J, PAL K, DANQUAH M K. Virus-like nanoparticles as a novel delivery tool in gene therapy[J]. Biochimie, 2019, 157: 38-47.
doi: S0300-9084(18)30316-X
pmid: 30408502
|
[9] |
李生军, 张海霞, 冯若飞. 大肠杆菌表达病毒样颗粒的研究进展[J]. 中国免疫学杂志, 2021, 37(12): 1526-1532.
|
|
LI S J, ZHANG H X, FENG R F. Research progress of E. coli expressing virus-like particle vaccines[J]. Chin J Immunol, 2021, 37(12): 1526-1532.
|
[10] |
NOORAEI S, BAHRULOLUM H, HOSEINI Z S, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers[J]. J Nanobiotechnology, 2021, 19(1): 59.
|
[11] |
MEJÍA-MÉNDEZ J L, VAZQUEZ-DUHALT R, HERNÁNDEZ L R, et al. Virus-like particles: fundamentals and biomedical applications[J]. Int J Mol Sci, 2022, 23(15): 8579.
|
[12] |
TARIQ H, BATOOL S, ASIF S, et al. Virus-like particles: Revolutionary platforms for developing vaccines against emerging infectious diseases[J]. Front Microbiol, 2022, 12: 790121.
|
[13] |
RUZZI F, SEMPRINI M S, SCALAMBRA L, et al. Virus-like particle (VLP) vaccines for cancer immunotherapy[J]. Int J Mol Sci, 2023, 24(16): 12963.
|
[14] |
朱珊, 刘志安, 李春, 等. 病毒样颗粒的制备研究与应用进展[J]. 中国生物工程杂志, 2025, 45(S1): 68-79.
|
|
ZHU S, LIU Z A, LI C, et al. Progress in preparation and application of virus-like particles[J]. China Biotechnol, 2025, 45(S1): 68-79.
|
[15] |
CHEN C W, SAUBI N, JOSEPH-MUNNÉ J. Chimeric human papillomavirus-16 virus-like particles presenting HIV-1 P18I10 peptide: expression, purification, bio-physical properties and immunogenicity in BALB/c mice[J]. Int J Mol Sci, 2023, 24(9): 8060.
|
[16] |
MARKOWITZ L E, SCHILLER J T. Human papillomavirus vaccines[J]. J Infect Dis, 2021, 224(Supplement_4): S367-S378.
doi: 10.1093/infdis/jiaa621
pmid: 34590141
|
[17] |
张磊, 杨艺凡, 马茜, 等. 病毒样颗粒疫苗研究进展[J]. 中华预防医学杂志, 2024, 58(9): 1404-1414.
|
|
ZHANG L, YANG Y F, MA X, et al. Current research status of virus-like particle vaccine[J]. Chin J Prev Med, 2024, 58(9): 1404-1414.
|
[18] |
YOON K W, CHU K B, EOM G D, et al. Protective humoral immune response induced by recombinant virus-like particle vaccine expressing Leishmania donovani surface antigen[J]. ACS Infect Dis, 2023, 9(12): 2583-2592.
|
[19] |
MCGINNES CULLEN L, LUO B, WEN Z Y, et al. The respiratory syncytial virus (RSV) G protein enhances the immune responses to the RSV F protein in an enveloped virus-like particle vaccine candidate[J]. J Virol, 2023, 97(1): e0190022.
|
[20] |
NING W S, YAN S, SONG Y Y, et al. Virus-like particle: a nano-platform that delivers cancer antigens to elicit an anti-tumor immune response[J]. Front Immunol, 2025, 15: 1504124.
|
[21] |
LI A W, SOBRAL M C, BADRINATH S, et al. A facile approach to enhance antigen response for personalized cancer vaccination[J]. Nat Mater, 2018, 17(6): 528-534.
doi: 10.1038/s41563-018-0028-2
pmid: 29507416
|
[22] |
ZHU G Z, LYNN G M, JACOBSON O, et al. Albumin/vaccine nano complexes that assemble in vivo for combination cancer immunotherapy[J]. Nat Commun, 2017, 8(1): 1954.
|
[23] |
ZHU G Z, MEI L, VISHWASRAO H D, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy[J]. Nat Commun, 2017, 8(1): 1482.
doi: 10.1038/s41467-017-01386-7
pmid: 29133898
|
[24] |
LI W J, JING Z, WANG S Q, et al. P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy[J]. Biomaterials, 2021, 271: 120726.
|
[25] |
PALLADINI A, THRANE S, JANITZEK C M, et al. Virus-like particle display of HER2 induces potent anti-cancer responses[J]. Oncoimmunology, 2018, 7(3): e1408749.
|
[26] |
KURG R, REINSALU O, JAGUR S, et al. Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens[J]. Sci Rep, 2016, 6: 29425.
doi: 10.1038/srep29425
pmid: 27403717
|
[27] |
WANG X, DONG K, LONG M, et al. Incorporation of CD40 ligand enhances the immunogenicity of tumor-associated calcium signal transducer 2 virus-like particles against lung cancer[J]. Int J Mol Med, 2018, 41(6): 3671-3679.
|
[28] |
SAKACH E, SACKS R, KALINSKY K. Trop-2 as a therapeutic target in breast cancer[J]. Cancers (Basel), 2022, 14(23): 5936.
|
[29] |
CEGLIA V, ZURAWSKI S, MONTES M, et al. Anti-CD40 antibodies fused to CD40 ligand have superagonist properties[J]. J Immunol, 2021, 207(8): 2060-2076.
doi: 10.4049/jimmunol.2000704
pmid: 34551965
|
[30] |
王希, 刘昕阳. 细胞表面糖蛋白trop-2病毒样颗粒中整合免疫佐剂CD40配体后增强病毒样颗粒抵抗肺癌免疫原性的研究[C]. 2022CCTB中国肿瘤标志物学术大会暨中国整合肿瘤学大会暨第十六届肿瘤标志物青年科学家论坛暨中国肿瘤标志物产业创新大会论文集. 上海, 2023: 532-533.
|
|
WANG Xi, LIU X Y. The study on enhancing the immunogenicity of virus like particles against lung cancer by integrating immune adjuvant CD40 ligand into the cell surface glycoprotein trop-2 virus like particles[C]. Proceedings of the 2022 CCTB China Cancer Biomarkers Academic Conference and China Integrative Oncology Conference, the 16th Young Scientists Forum on Cancer Biomarkers, and the China Cancer Biomarkers Industry Innovation Conference Shanghai, 2023: 532-533.
|
[31] |
李岩异, 吕娜, 贾思凝, 等. 体外组装的病毒样颗粒在疫苗和药物递送中的应用[J]. 生物技术进展, 2023, 13(2): 201-209.
doi: 10.19586/j.2095-2341.2022.0108
|
|
LI Y Y, LYU N, JIA S N, et al. Application of virus like particles assembled in vitro in vaccine and drug delivery[J]. Curr Biotechnol, 2023, 13(2): 201-209.
|
[32] |
ZHANG H, XIE D, CHEN M, et al. pH/GSH dual-responsive Janus-type Au@H-MP@DOX MR molecular imaging nanomotor for combined photothermal/chemotherapeutic treatment of pancreatic cancer[J]. Mol Pharm, 2025, 22(6): 3491-3507.
|
[33] |
WEN Q, LI J M, DENG H J, et al. Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer[J]. Int J Biol Macromol, 2025, 300: 140238.
|
[34] |
GUAN Q R, SU J S, LI Y L, et al. Near-infrared laser-responsive erythrocyte membrane camouflaged nanoparticles for chemo-photodynamic therapy of breast cancer[J]. ACS Appl Nano Mater, 2024, 7(11): 13785-13798.
|
[35] |
JI G J, YUAN W Z, WANG X Y, et al. 5-Fluorouracil induces ferroptosis in breast cancer cells via targeting SLC7A11[J]. Biochem Biophys Res Commun, 2025, 770: 151972.
|
[36] |
ANDAVAR A, BHAGAVATHI V R, COUSIN J, et al. Current research in drug-free cancer therapies[J]. Bioengineering (Basel), 2025, 12(4): 341.
|
[37] |
赵尉吏, 吕娜, 李会强, 等. 病毒样颗粒疫苗研究进展[J]. 生物技术进展, 2024, 14(5): 776-784.
doi: 10.19586/j.2095-2341.2024.0069
|
|
ZHAO W L, LYU N, LI H Q, et al. Research progress of virus-like particles vaccine[J]. Curr Biotechnol, 2024, 14(5): 776-784.
doi: 10.19586/j.2095-2341.2024.0069
|
[38] |
ALVANDI N, RAJABNEJAD M, TAGHVAEI Z, et al. New generation of viral nanoparticles for targeted drug delivery in cancer therapy[J]. J Drug Target, 2022, 30(2): 151-165.
|
[39] |
BIABANIKHANKAHDANI R, HO K L, ALITHEEN N B, et al. A dual bioconjugated virus-like nanoparticle as a drug delivery system and comparison with a pH-responsive delivery system[J]. Nanomaterials (Basel), 2018, 8(4): 236.
|
[40] |
JUNG E, FOROUGHISHAFIEI A, HUN CHUNG Y, et al. Enhanced efficacy of a TLR3 agonist delivered by cowpea chlorotic mottle virus nanoparticles[J]. Small Sci, 2024, 4(7): 2300314.
|
[41] |
JUNG E, CHUNG Y H, STEINMETZ N F. TLR agonists delivered by plant virus and bacteriophage nanoparticles for cancer immunotherapy[J]. Bioconjug Chem, 2023, 34(9): 1596-1605.
|
[42] |
SPEIR J A, MUNSHI S, WANG G, et al. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy[J]. Structure, 1995, 3(1): 63-78.
pmid: 7743132
|
[43] |
BARWAL I, KUMAR R, KATERIYA S, et al. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex[J]. Sci Rep, 2016, 6: 37096.
doi: 10.1038/srep37096
pmid: 27872483
|
[44] |
KIM H, CHOI H, BAE Y, et al. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue[J]. Biotechnol Bioeng, 2019, 116(11): 2843-2851.
doi: 10.1002/bit.27129
pmid: 31329283
|
[45] |
KIM K R, LEE A S, KIM S M, et al. Virus-like nanoparticles as a theranostic platform for cancer[J]. Front Bioeng Biotechnol, 2023, 10: 1106767.
|
[46] |
CESUR-ERGÜN B, DEMIR-DORA D. Gene therapy in cancer[J]. J Gene Med, 2023, 25(11): e3550.
|
[47] |
BANSKOTA S, RAGURAM A, SUH S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins[J]. Cell, 2022, 185(2): 250-265.e16.
|
[48] |
BARADARAN B, MOHAMMADI A, SHAMEKHI S, et al. A novel method for the development of plasmid DNA-loaded nanoliposomes for cancer gene therapy[J]. Drug Deliv Transl Res, 2022, 12(6): 1508-1520.
|
[49] |
SAKAI C, HOSOKAWA K, WATANABE T, et al. Human hepatitis B virus-derived virus-like particle as a drug and DNA delivery carrier[J]. Biochem Biophys Res Commun, 2021, 581: 103-109.
|
[50] |
LIN X Y, REN S L, LI T D, et al. Advances of virus-like particles as mRNA delivery vectors[J]. Sheng Wu Gong Cheng Xue Bao, 2025, 41(4): 1268-1279.
|
[51] |
YI L, WANG T, SONG B L, et al. Virus-like nanoparticles deliver small interfering RNA to pancreatic cancer cells through filopodia-mediated internalization[J]. ACS Nano, 2025, 19(23): 21614-21628.
|
[52] |
王玹, 万颖, 张先恩, 等. 基于病毒样颗粒的mRNA递送系统研究进展[J]. 科学通报, 2024, 69(31): 4625-4636.
|
|
WANG X, WAN Y, ZHANG X E, et al. Progress in mRNA delivery systems based on virus-like particles[J]. Chin Sci Bull, 2024, 69(31): 4625-4636.
|
[53] |
LIN M C, SHEN C H, CHANG D, et al. Inhibition of human lung adenocarcinoma growth and metastasis by JC polyomavirus-like particles packaged with an SP-B promoter-driven CD59-specific shRNA[J]. Clin Sci (Lond), 2019, 133(21): 2159-2169.
|
[54] |
AO Z J, CHEN W, TAN J, et al. Lentivirus-based virus-like particles mediate delivery of caspase 8 into breast cancer cells and inhibit tumor growth[J]. Cancer Biother Radiopharm, 2019, 34(1): 33-41.
|
[55] |
ZHANG H J, YAMAZAKI T, ZHI C Y, et al. Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides[J]. Nanoscale, 2012, 4(20): 6343-6350.
pmid: 22941279
|
[56] |
ZHANG H J, YAN T, XU S, et al. Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 144-151.
|
[57] |
ZHANG H J, GAO X D. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 935-946.
|
[58] |
LIU M G, O’CONNOR R S, TREFELY S, et al. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don’t-eat-me' signal[J]. Nat Immunol, 2019, 20(3): 265-275.
|
[59] |
YANG J, ZHANG Q, LIU Y X, et al. Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma[J]. Nanomedicine (Lond), 2020, 15(14): 1391-1409.
|
[60] |
YIN F, YANG C B, WANG Q Q, et al. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for co-delivery of doxorubicin and siRNA[J]. Theranostics, 2015, 5(8): 818-833.
doi: 10.7150/thno.11335
pmid: 26000055
|
[61] |
贾斐, 杜传超, 毛天立, 等. 纳米载体共递送基因和化疗药物用于肿瘤治疗的研究进展[J]. 材料导报, 2022, 36(17): 25-33.
|
|
JIA F, DU C C, MAO T L, et al. Progress in the use of nanocarriers for co-delivery of genes and chemotherapeutic agents for cancer therapy[J]. Mater Rep, 2022, 36(17): 25-33.
|
[62] |
CHENG K M, DU T, LI Y, et al. Dual-antigen-loaded hepatitis B virus core antigen virus-like particles stimulate efficient immunotherapy against melanoma[J]. ACS Appl Mater Interfaces, 2020, 12(48): 53682-53690.
|
[63] |
GAN B K, RULLAH K, YONG C Y, et al. Targeted delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells overexpressing epithelial growth factor receptor (EGFR) using virus-like nanoparticles[J]. Sci Rep, 2020, 10(1): 16867.
doi: 10.1038/s41598-020-73967-4
pmid: 33033330
|
[64] |
ZHAO Q H, CHEN W H, CHEN Y D, et al. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery[J]. Bioconjug Chem, 2011, 22(3): 346-352.
|
[65] |
YAN D, TENG Z D, SUN S Q, et al. Foot-and-mouth disease virus-like particles as integrin-based drug delivery system achieve targeting anti-tumor efficacy[J]. Nanomedicine, 2017, 13(3): 1061-1070.
doi: S1549-9634(16)30224-6
pmid: 27993721
|
[66] |
KATO T, YUI M, DEO V K, et al. Development of Rous sarcoma virus-like particles displaying hCC49 scFv for specific targeted drug delivery to human colon carcinoma cells[J]. Pharm Res, 2015, 32(11): 3699-3707.
|
[67] |
LIN M C, WANG M L, CHOU M C, et al. Gene therapy for castration-resistant prostate cancer cells using JC polyomavirus-like particles packaged with a PSA promoter driven-suicide gene[J]. Cancer Gene Ther, 2019, 26(7/8): 208-215.
|