China Oncology ›› 2025, Vol. 35 ›› Issue (7): 642-656.doi: 10.19401/j.cnki.1007-3639.2025.07.003
• Specialist's Review • Previous Articles Next Articles
Received:
2025-06-04
Revised:
2025-07-13
Online:
2025-07-30
Published:
2025-08-13
Contact:
LIU Qian
Supported by:
Share article
CLC Number:
ZHANG Yuyang, LIU Qian. Advances and future perspectives of neoadjuvant immunotherapy in colorectal cancer[J]. China Oncology, 2025, 35(7): 642-656.
[1] | HODI F S, O’DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. |
[2] | GANDHI L, RODRÍGUEZ-ABREU D, GADGEEL S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(22): 2078-2092. |
[3] | ANTONIA S J, VILLEGAS A, DANIEL D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929. |
[4] |
THIBODEAU S N, BREN G, SCHAID D. Microsatellite instability in cancer of the proximal colon[J]. Science, 1993, 260(5109): 816-819.
doi: 10.1126/science.8484122 pmid: 8484122 |
[5] |
RICHARD BOLAND C, GOEL A. Microsatellite instability in colorectal cancer[J]. Gastroenterology, 2010, 138(6): 2073-2087.e3.
doi: 10.1053/j.gastro.2009.12.064 pmid: 20420947 |
[6] | LE D T, URAM J N, WANG H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. |
[7] | ANDRE T, ELEZ E, VAN CUTSEM E, et al. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer[J]. N Engl J Med, 2024, 391(21): 2014-2026. |
[8] | ANDRÉ T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218. |
[9] |
LIU J, BLAKE S J, YONG M C R, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease[J]. Cancer Discov, 2016, 6(12): 1382-1399.
pmid: 27663893 |
[10] |
GRINSHTEIN N, BRIDLE B, WAN Y H, et al. Neoadjuvant vaccination provides superior protection against tumor relapse following surgery compared with adjuvant vaccination[J]. Cancer Res, 2009, 69(9): 3979-3985.
doi: 10.1158/0008-5472.CAN-08-3385 pmid: 19383917 |
[11] | PATEL S P, OTHUS M, CHEN Y B, et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma[J]. N Engl J Med, 2023, 388(9): 813-823. |
[12] | BLANK C U, LUCAS M W, SCOLYER R A, et al. Neoadjuvant nivolumab and ipilimumab in resectable stage Ⅲ melanoma[J]. N Engl J Med, 2024, 391(18): 1696-1708. |
[13] |
CHALABI M, FANCHI L F, DIJKSTRA K K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
doi: 10.1038/s41591-020-0805-8 pmid: 32251400 |
[14] | CHALABI M, VERSCHOOR Y L, TAN P B, et al. Neoadjuvant immunotherapy in locally advanced mismatch repair-deficient colon cancer[J]. N Engl J Med, 2024, 390(21): 1949-1958. |
[15] | DE GOOYER P G M, VERSCHOOR Y L, VAN DEN DUNGEN L D W, et al. Neoadjuvant nivolumab (nivo) plus relatlimab (rela) in MMR-deficient colon cancer: results of the NICHE-3 study[J]. Ann Oncol, 2024, 35: S428-S429. |
[16] | CERCEK A, LUMISH M, SINOPOLI J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25): 2363-2376. |
[17] | GEORGE T J, YOTHERS G, JACOBS S A, et al. Phase Ⅱ study of durvalumab following neoadjuvant chemoRT in operable rectal cancer: NSABP FR-2[J]. J Clin Oncol, 2022, 40(4_suppl): 99. |
[18] | WANG F, LAI C X, LV Y M, et al. Efficacy and safety of combining short-course neoadjuvant chemoradiotherapy with envafolimab in locally advanced rectal cancer patients with microsatellite stability: a phase Ⅱ PRECAM experimental study[J]. Int J Surg, 2025, 111(1): 334-345. |
[19] | LIN Z Y, ZHANG P, CHI P, et al. Neoadjuvant short-course radiotherapy followed by camrelizumab and chemotherapy in locally advanced rectal cancer (UNION): early outcomes of a multicenter randomized phase Ⅲ trial[J]. Ann Oncol, 2024, 35(10): 882-891. |
[20] | DOMINGO E, FREEMAN-MILLS L, RAYNER E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 207-216. |
[21] | MEHNERT J M, PANDA A, ZHONG H, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer[J]. J Clin Invest, 2016, 126(6): 2334-2340. |
[22] |
BOURDAIS R, ROUSSEAU B, PUJALS A, et al. Polymerase proofreading domain mutations: new opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency[J]. Crit Rev Oncol Hematol, 2017, 113: 242-248.
doi: S1040-8428(16)30315-8 pmid: 28427513 |
[23] | WANG F, ZHAO Q, WANG Y N, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncol, 2019, 5(10): 1504-1506. |
[24] | HE J J, OUYANG W, ZHAO W G, et al. Distinctive genomic characteristics in POLE/POLD1-mutant cancers can potentially predict beneficial clinical outcomes in patients who receive immune checkpoint inhibitor[J]. Ann Transl Med, 2021, 9(2): 129. |
[25] | GARMEZY B, GHEEYA J, LIN H Y, et al. Clinical and molecular characterization of POLE mutations as predictive biomarkers of response to immune checkpoint inhibitors in advanced cancers[J]. JCO Precis Oncol, 2022, 6: e2100267. |
[26] |
SCHROCK A B, OUYANG C, SANDHU J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer[J]. Ann Oncol, 2019, 30(7): 1096-1103.
doi: S0923-7534(19)31240-2 pmid: 31987376 |
[27] |
FABRIZIO D A, GEORGE T J Jr, DUNNE R F, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition[J]. J Gastrointest Oncol, 2018, 9(4): 610-617.
doi: 10.21037/jgo.2018.05.06 pmid: 30151257 |
[28] | CHEN E X, JONKER D J, LOREE J M, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian cancer trials group CO.26 study[J]. JAMA Oncol, 2020, 6(6): 831-838. |
[29] | BANDO H, TSUKADA Y, INAMORI K, et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer[J]. Clin Cancer Res, 2022, 28(6): 1136-1146. |
[30] | LIN Z Y, CAI M, ZHANG P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11): e003554. |
[31] | ANTONIOTTI C, ROSSINI D, PIETRANTONIO F, et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2022, 23(7): 876-887. |
[32] | LU Y T, YUAN X L, WANG M, et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies[J]. J Hematol Oncol, 2022, 15(1): 47. |
[33] | ZHAO W S, LEI J, KE S B, et al. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase Ⅱ trial (RENMIN-215)[J]. EClinicalMedicine, 2023, 66: 102315. |
[34] | HU H B, KANG L, ZHANG J W, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48. |
[35] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: colon cancer. Version 1. 2025[EB/OL]. [2025-07-07]. https://www.nccn.org/guidelines/guidelines-detail. |
[36] | 中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)结直肠癌诊疗指南2025[M]. 北京: 人民卫生出版社, 2025. |
Guidelines Working Committee, Chinese Society of Clinical Oncology. Guidelines of Chinese Society of Clinical Oncology (CSCO): colorectal cancer 2025[M]. Beijing: People’s Medical Publishing House, 2025. | |
[37] | VERSCHOOR Y L, VAN DEN BERG J, BEETS G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study[J]. J Clin Oncol, 2022, 40(16_suppl): 3511. |
[38] | XU R H, WANG F, CHEN G, et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ⅰb study[J]. J Clin Oncol, 2024, 42(16_suppl): 3505. |
[39] | STARLING N, NEUMANN K, COLWELL B, et al. AZUR-2, a phase Ⅲ, open-label, randomized study of perioperative dostarlimab monotherapy vs standard of care in previously untreated patients with T4N0 or stage Ⅲ dMMR/MSI-H resectable colon cancer[J]. J Clin Oncol, 2024, 42(3_suppl): TPS240. |
[40] | CHEN G, JIN Y, GUAN W L, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431. |
[41] | CERCEK A, SINOPOLI J C, SHIA J R, et al. Durable complete responses to PD-1 blockade alone in mismatch repair deficient locally advanced rectal cancer[J]. J Clin Oncol, 2024, 42(17_suppl): LBA3512. |
[42] | CERCEK A, BACHET J B, CAPDEVILA J, et al. A phase two, single-arm, open-label study with dostarlimab monotherapy in participants with untreated stage Ⅱ/Ⅲ dMMR/MSI-H locally advanced rectal cancer (AZUR-1)[J]. Clin Colorectal Cancer, 2025, 24(2): 325-330. |
[43] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: rectal cancer. Version 1. 2025[EB/OL]. [2025-07-07]. https://www.nccn.org/guidelines/guidelines-detail. |
[44] | MORTON D, SEYMOUR M, MAGILL L, et al. Preoperative chemotherapy for operable colon cancer: mature results of an international randomized controlled trial[J]. J Clin Oncol, 2023, 41(8): 1541-1552. |
[45] | KASI P M, JAFARI M D, YEO H, et al. Neoadjuvant botensilimab (BOT) plus balstilimab (BAL) in resectable mismatch repair proficient and deficient colorectal cancer: NEST-1 clinical trial[J]. Ann Oncol, 2024, 35: S5-S6. |
[46] | HISSONG E, JAFARI M D, KHAN S, et al. Neoadjuvant botensilimab (BOT) plus balstilimab (BAL) in resectable mismatch repair proficient (pMMR) and deficient (dMMR) colorectal cancer (CRC): NEST clinical trial update[J]. J Clin Oncol, 2025, 43(4_suppl): 207. |
[47] |
CRONER R S, MERKEL S, PAPADOPOULOS T, et al. Multivisceral resection for colon carcinoma[J]. Dis Colon Rectum, 2009, 52(8): 1381-1386.
doi: 10.1007/DCR.0b013e3181ab580b pmid: 19617748 |
[48] | XIA F, WANG Y Q, WANG H, et al. Randomized phase Ⅱ trial of immunotherapy-based total neoadjuvant therapy for proficient mismatch repair or microsatellite stable locally advanced rectal cancer (TORCH)[J]. J Clin Oncol, 2024, 42(28): 3308-3318. |
[49] | ZHANG H, LI Y Q, XIA F, et al. Study protocol of short-course radiotherapy combined with CAPOX and PD-1 inhibitor for locally advanced colon cancer: a randomised, prospective, multicentre, phase Ⅱ trial (TORCH-C)[J]. BMJ Open, 2024, 14(2): e079442. |
[50] | GEORGE T J, YOTHERS G, RAHMA O E, et al. Long-term results from NRG-GI002: a phase Ⅱ clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)[J]. J Clin Oncol, 2023, 41(4_suppl): 7. |
[51] | XIAO W W, CHEN G, GAO Y H, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial[J]. Cancer Cell, 2024, 42(9): 1570-1581.e4. |
[52] | PANG K, LIU X Z, YAO H W, et al. Impact of PD1 blockade added to neoadjuvant chemoradiotherapy on rectal cancer surgery: post-hoc analysis of the randomized POLARSTAR trial[J]. Br J Surg, 2025, 112(3): znaf057. |
[53] | DE LA FOUCHARDIERE C, ZAANAN A, COHEN R, et al. Immunotherapy for localized dMMR/MSI tumors: first interim analysis of the IMHOTEP trial[J]. J Clin Oncol, 2023, 41(16_suppl): 2591. |
[54] | SHIU K K, JIANG Y R, SAUNDERS M, et al. NEOPRISM-CRC: Neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer[J]. J Clin Oncol, 2024, 42(17_suppl): LBA3504. |
[55] | BUJKO K, NOWACKI M P, NASIEROWSKA-GUTTMEJER A, et al. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer[J]. Br J Surg, 2006, 93(10): 1215-1223. |
[56] | ERLANDSSON J, HOLM T, PETTERSSON D, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm Ⅲ): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial[J]. Lancet Oncol, 2017, 18(3): 336-346. |
[57] | JIN J, TANG Y, HU C, et al. Multicenter, randomized, phase Ⅲ trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR)[J]. J Clin Oncol, 2022, 40(15): 1681-1692. |
[58] | DIJKSTRA E A, NILSSON P J, HOSPERS G A P, et al. Locoregional failure during and after short-course radiotherapy followed by chemotherapy and surgery compared with long-course chemoradiotherapy and surgery: a 5-year follow-up of the RAPIDO trial[J]. Ann Surg, 2023, 278(4): e766-e772. |
[59] | PU W J, CHEN W Q, JING H M, et al. Total neoadjuvant therapy based on short-course radiotherapy versus standard long-course chemoradiotherapy for locally advanced rectal cancer: a systematic review and meta-analysis of randomized controlled trials[J]. Front Oncol, 2024, 14: 1515756. |
[60] | YANG L, CUI X J, WU F P, et al. The efficacy and safety of neoadjuvant chemoradiotherapy combined with immunotherapy for locally advanced rectal cancer patients: a systematic review[J]. Front Immunol, 2024, 15: 1392499. |
[61] | ZHANG H, HUANG J, XU H J, et al. Neoadjuvant immunotherapy for DNA mismatch repair proficient/microsatellite stable non-metastatic rectal cancer: a systematic review and meta-analysis[J]. Front Immunol, 2025, 16: 1523455. |
[62] |
GRAPIN M, RICHARD C, LIMAGNE E, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination[J]. J Immunother Cancer, 2019, 7(1): 160.
doi: 10.1186/s40425-019-0634-9 pmid: 31238970 |
[63] | MORISADA M, CLAVIJO P E, MOORE E, et al. PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation[J]. Oncoimmunology, 2017, 7(3): e1395996. |
[64] | LAN J, LI R, YIN L M, et al. Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 101(1): 74-87. |
[65] |
CROCENZI T, COTTAM B, NEWELL P, et al. A hypofractionated radiation regimen avoids the lymphopenia associated with neoadjuvant chemoradiation therapy of borderline resectable and locally advanced pancreatic adenocarcinoma[J]. J Immunother Cancer, 2016, 4: 45.
doi: 10.1186/s40425-016-0149-6 pmid: 27532020 |
[66] | SHAMSEDDINE A, MACHMOUCHI A, NATOUT M, et al. Assessment of immunoscore and MRI tumor regression grade to predict complete pathologic response in patients with locally advanced rectal cancer: data from phase Ⅱ averectal study[J]. J Clin Oncol, 2023, 41(4_suppl): 212. |
[67] | 张旋, 冯清, 李云峰, 等. 全程新辅助治疗联合PD-L1抑制剂治疗pMMR/MSS型局部进展期直肠癌的初步疗效和安全性分析(ESTIMATE):一项前瞻性、单臂、Ⅱ期试验[C]. 中国临床肿瘤学会年会: 厦门, 2024. |
ZHUANG X, FENG Q, LI Y F, et al. Preliminary efficacy and safety of total neoadjuvant therapy combined with PD-L1 blockade in pMMR/MSS locally advanced rectal cancer (ESTIMATE): a prospective, single-arm, phase Ⅱ trial[C]. ASCO: Chicago, 2024. | |
[68] | TAMBERI S, GRASSI E, ZINGARETTI C, et al. A phase Ⅱ study of capecitabine plus concomitant radiation therapy followed by durvalumab (MEDI4736) as preoperative treatment in rectal cancer: PANDORA study final results[J]. J Clin Oncol, 2022, 40(17_suppl): LBA3513. |
[69] | SALVATORE L, BENSI M, CORALLO S, et al. Phase Ⅱ study of preoperative (PREOP) chemoradiotherapy (CTRT) plus avelumab (AVE) in patients (PTS) with locally advanced rectal cancer (LARC): the AVANA study[J]. J Clin Oncol, 2021, 39(15_suppl): 3511. |
[70] | YANG Z Y, GAO J L, ZHENG J Y, et al. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study[J]. Signal Transduct Target Ther, 2024, 9(1): 56. |
[71] | WU A W, LI Y J, JI D B, et al. PKUCH 04 trial: Total neoadjuvant chemoradiation combined with neoadjuvant PD-1 blockade for pMMR/MSS locally advanced middle to low rectal cancer[J]. J Clin Oncol, 2022, 40(16_suppl): 3609. |
[72] | ROXBURGH C S, HANNA C R, GRAHAM J, et al. Durvalumab (MEDI 4736) with extended neoadjuvant regimens in rectal cancer: a randomised phase Ⅱ trial (PRIME-RT)[J]. J Clin Oncol, 2023, 41(4_suppl): TPS282. |
[73] | FOKAS E, ALLGÄUER M, POLAT B, et al. Randomized phase Ⅱ trial of chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: CAO/ARO/AIO-12[J]. J Clin Oncol, 2019, 37(34): 3212-3222. |
[74] | TANG Y, MA H, ZHOU H, et al. Preliminary results of a prospective phase Ⅱ study of total neoadjuvant therapy for locally advanced rectal cancer[J]. Int J Radiat Oncol, 2022, 114(3): e611-e612. |
[75] | GARCIA-AGUILAR J, PATIL S, GOLLUB M J, et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy[J]. J Clin Oncol, 2022, 40(23): 2546-2556. |
[76] |
RAMJIAWAN R R, GRIFFIOEN A W, DUDA D G. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy?[J]. Angiogenesis, 2017, 20(2): 185-204.
doi: 10.1007/s10456-017-9552-y pmid: 28361267 |
[77] | FUKUOKA S, HARA H, TAKAHASHI N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. |
[78] | SCLAFANI F, BREGNI G, ASSAF I, et al. LBA 2 Interim efficacy analysis of REGINA, a phase Ⅱ trial of neoadjuvant regorafenib (Rego), nivolumab (Nivo), and short-course radiotherapy (SCRT) in stage Ⅱ-Ⅲ rectal cancer (RC)[J]. Ann Oncol, 2024, 35: S212-S213. |
[79] | YU J H, XIAO B Y, LI D D, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study[J]. Lancet Oncol, 2024, 25(7): 843-852. |
[80] | VERSCHOOR Y L, LAMBREGTS D M J, VAN DEN BERG J, et al. Radiotherapy, atezolizumab, and bevacizumab in rectal cancers with the aim of organ preservation: the TARZAN study[J]. J Clin Oncol, 2023, 41(4_suppl): 158. |
[81] | HUANG J, HE W, ZHAO Y, et al. mFOLFOX6+bevacizumab+PD-1 monoclonal antibody in locally advanced MSS CRC (BASKETⅡ): a prospective, single-arm, open-label, phase Ⅱ study[J]. Ann Oncol, 2024, 35: S1433. |
[82] | LIN Z Y, ZHANG P, ZHAO L, et al. Short-course radiotherapy (SCRT) followed by fruquintinib plus adebrelimab and CAPOX in the total neoadjuvant therapy of locally advanced rectal cancer (LARC): a multicenter, single-arm, open-label, phase Ⅱ study (UNION TNT)[J]. J Clin Oncol, 2025, 43(4_suppl): 192. |
[83] | 李士杰, 王警, 吴齐. 消化道肿瘤新辅助放化疗后的内镜评效[J]. 中华胃肠外科杂志, 2024, 27(4): 359-364. |
LI S J, WANG J, WU Q. Endoscopic response evaluation in gastrointestinal cancers after neoadjuvant chemoradiotherapy[J]. Chin J Gastrointest Surg, 2024, 27(4): 359-364. | |
[84] | FOX D A, BHAMIDIPATI D, KONISHI T, et al. Endoscopic and imaging outcomes of PD-1 therapy in localised dMMR colorectal cancer[J]. Eur J Cancer, 2023, 194: 113356. |
[85] |
LIU S, ZHONG G X, ZHOU W X, et al. Can endorectal ultrasound, MRI, and mucosa integrity accurately predict the complete response for mid-low rectal cancer after preoperative chemoradiation? A prospective observational study from a single medical center[J]. Dis Colon Rectum, 2018, 61(8): 903-910.
doi: 10.1097/DCR.0000000000001135 pmid: 29944579 |
[86] |
SMITH F M, WILAND H, MACE A, et al. Clinical criteria underestimate complete pathological response in rectal cancer treated with neoadjuvant chemoradiotherapy[J]. Dis Colon Rectum, 2014, 57(3): 311-315.
doi: 10.1097/DCR.0b013e3182a84eba pmid: 24509452 |
[87] |
DI GIACOMO A M, DANIELLI R, GUIDOBONI M, et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases[J]. Cancer Immunol Immunother, 2009, 58(8): 1297-1306.
doi: 10.1007/s00262-008-0642-y pmid: 19139884 |
[88] | SEYMOUR L, BOGAERTS J, PERRONE A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics[J]. Lancet Oncol, 2017, 18(3): e143-e152. |
[89] |
KIM S H, LEE J M, HONG S H, et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy[J]. Radiology, 2009, 253(1): 116-125.
doi: 10.1148/radiol.2532090027 pmid: 19789256 |
[90] |
YUVAL J B, PATIL S, GANGAI N, et al. MRI assessment of rectal cancer response to neoadjuvant therapy: a multireader study[J]. Eur Radiol, 2023, 33(8): 5761-5768.
doi: 10.1007/s00330-023-09480-9 pmid: 36814032 |
[91] |
LAMBREGTS D M J, DELLI PIZZI A, LAHAYE M J, et al. A pattern-based approach combining tumor morphology on MRI with distinct signal patterns on diffusion-weighted imaging to assess response of rectal tumors after chemoradiotherapy[J]. Dis Colon Rectum, 2018, 61(3): 328-337.
doi: 10.1097/DCR.0000000000000915 pmid: 29369900 |
[92] | LAHAYE M J, BEETS G L, ENGELEN S M E, et al. Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part Ⅱ. What are the criteria to predict involved lymph nodes?[J]. Radiology, 2009, 252(1): 81-91. |
[93] | AVALLONE A, ALOJ L, CARACÒ C, et al. Early FDG PET response assessment of preoperative radiochemotherapy in locally advanced rectal cancer: correlation with long-term outcome[J]. Eur J Nucl Med Mol Imaging, 2012, 39(12): 1848-1857. |
[94] | CAPIRCI C, RUBELLO D, PASINI F, et al. The role of dual-time combined 18-fluorodeoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery[J]. Int J Radiat Oncol Biol Phys, 2009, 74(5): 1461-1469. |
[95] | LOPCI E, HICKS R J, DIMITRAKOPOULOU-STRAUSS A, et al. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [18F] FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2323-2341. |
[96] | LOPCI E, AIDE N, DIMITRAKOPOULOU-STRAUSS A, et al. Perspectives on joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards for [18F] FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors[J]. Cancer Imaging, 2022, 22(1): 73. |
[97] | CRIMÌ F, VALEGGIA S, BAFFONI L, et al. [18F] FDG PET/MRI in rectal cancer[J]. Ann Nucl Med, 2021, 35(3): 281-290. |
[98] | ZHANG X, LIN Z Y, FENG Y, et al. Predicting pathologic complete response in locally advanced rectal cancer with [68Ga]Ga-FAPI-04 PET, [18F]FDG PET, and contrast-enhanced MRI: lesion-to-lesion comparison with pathology[J]. J Nucl Med, 2024, 65(10): 1548-1556. |
[99] | AVCI G G, ARAL I P. The role of MRI and 18F-FDG PET/CT with respect to evaluation of pathological response in the rectal cancer patients after neoadjuvant chemoradiotherapy[J]. Indian J Cancer, 2021. |
[100] |
PLODECK V, RAHBARI N N, WEITZ J, et al. FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences[J]. Eur Radiol, 2019, 29(1): 422-428.
doi: 10.1007/s00330-018-5589-6 pmid: 29980927 |
[101] | HU T D, GONG J, SUN Y Q, et al. Magnetic resonance imaging-based radiomics analysis for prediction of treatment response to neoadjuvant chemoradiotherapy and clinical outcome in patients with locally advanced rectal cancer: a large multicentric and validated study[J]. MedComm (2020), 2024, 5(7): e609. |
[102] | MIRANDA J, TAN G X V, FERNANDES M C, et al. Rectal MRI radiomics for predicting pathological complete response: where we are[J]. Clin Imaging, 2022, 82: 141-149. |
[103] | LUDFORD K, HO W J, THOMAS J V, et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors[J]. J Clin Oncol, 2023, 41(12): 2181-2190. |
[104] | LIN Z Y, ZHAI M L, WANG H H, et al. Longitudinal circulating tumor DNA monitoring in predicting response to short-course radiotherapy followed by neoadjuvant chemotherapy and camrelizumab in locally advanced rectal cancer: data from a phase Ⅲ clinical trial (UNION)[J]. Cancer Lett, 2025, 611: 217442. |
[105] | GEMCAD-REVEAL STUDY- circulating tumor DNA as a predictor of relapse in patients with locally advanced rectal cancer (REVEAL)[J]. Published online June 15, 2023. |
[106] | SMITH J J, DASARI A, SHI Q, et al. Alliance A022104/NRG-GI010: a randomized phase Ⅱ trial testing the efficacy of triplet versus doublet chemotherapy to achieve clinical complete response in patients with locally advanced rectal cancer: the Janus rectal cancer trial[J]. J Clin Oncol, 2023, 41(16_suppl): TPS3640. |
[107] |
CAMPBELL B B, LIGHT N, FABRIZIO D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5): 1042-1056.e10.
doi: S0092-8674(17)31142-X pmid: 29056344 |
[108] | ESTEBAN-JURADO C, GIMÉNEZ-ZARAGOZA D, MUÑOZ J, et al. POLE and POLD1 screening in 155 patients with multiple polyps and early-onset colorectal cancer[J]. Oncotarget, 2017, 8(16): 26732-26743. |
[109] | KELLY R J, BEVER K, CHAO J, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer[J]. J Immunother Cancer, 2023, 11(6): e006658. |
[110] | MOSALEM O, COSTON T W, IMPERIAL R, et al. A comprehensive analysis of POLE/POLD1 genomic alterations in colorectal cancer[J]. Oncologist, 2024, 29(9): e1224-e1227. |
[111] | MA X X, RIAZ N, SAMSTEIN R M, et al. Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity[J]. Nat Genet, 2022, 54(7): 996-1012. |
[112] | BUDCZIES J, SEIDEL A, CHRISTOPOULOS P, et al. Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden[J]. Oncoimmunology, 2018, 7(12): e1526613. |
[113] |
SHA D, JIN Z H, BUDCZIES J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12): 1808-1825.
doi: 10.1158/2159-8290.CD-20-0522 pmid: 33139244 |
[114] | CHAU I, DOKI Y, AJANI J A, et al. Nivolumab (NIVO) plus ipilimumab (IPI) or NIVO plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced esophageal squamous cell carcinoma (ESCC): first results of the CheckMate 648 study[J]. J Clin Oncol, 2021, 39(18_suppl): LBA4001. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd