China Oncology ›› 2022, Vol. 32 ›› Issue (7): 635-642.doi: 10.19401/j.cnki.1007-3639.2022.07.007
• Review • Previous Articles Next Articles
LIU Qiang()(
), FANG Yi, WANG Jing(
)(
)
Received:
2021-12-01
Online:
2022-07-30
Published:
2022-08-09
Contact:
WANG Jing
E-mail:liuqaing@email.ncu.edu.cn;wangjing@cicams.ac.cn
Share article
CLC Number:
LIU Qiang, FANG Yi, WANG Jing. Application progress of single-cell sequencing technology in breast cancer research[J]. China Oncology, 2022, 32(7): 635-642.
Tab. 1
scRNA-seq database resources"
Database | Institution and website | Database feature | Reference |
---|---|---|---|
GEO | NCBI: | A public functional genomics data repository supporting MIAME-compliant data submissions. | [ |
Single Cell Expression Atlas | EMBL-EBI: | It sources and compiles data on the abundance and localisation of RNA and proteins in various biological systems and contexts and provides open access to this data for the research community. | [ |
Single Cell Portal | The Broad Institute of MIT and Harvard: | A cloud-based, scalable web application that is organized by studies with downloadable raw data, aiming to accelerate reproducible single-cell research through | No |
The Human Cell Atlas | Broad Institute: | The HCA Data Portal stores and provides single-cell data contributed by labs around the world. Anyone can contribute data, find data, or access community tools and applications. | [ |
PanglaoDB | Karolinska Institutet: | A database for the scientific community interested in exploration of single cell RNA sequencing experiments from mouse and human. | [ |
scRNASeqDB | The University of Texas Health Science Center: | A freely accessible online resource which incorporates 36 human single cell transcriptome data sets (174 cell groups and 8910 single cells) analyzed by scRNA-seq is provided | [ |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] |
WANG Y, MASHOCK M, TONG Z, et al. Changing technologies of RNA sequencing and their applications in clinical oncology[J]. Front Oncol, 2020, 10: 447.
doi: 10.3389/fonc.2020.00447 |
[3] | TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382. |
[4] |
KARAAYVAZ M, CRISTEA S, GILLESPIE S M, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq[J]. Nat Commun, 2018, 9(1): 3588.
doi: 10.1038/s41467-018-06052-0 |
[5] |
KIM C, GAO R L, SEI E, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing[J]. Cell, 2018, 173(4): 879-893.e13.
doi: 10.1016/j.cell.2018.03.041 |
[6] | WU S Z, RODEN D L, WANG C F, et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer[J]. EMBO J, 2020, 39(19): e104063. |
[7] |
CHUNG W, EUM H H, LEE H O, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer[J]. Nat Commun, 2017, 8: 15081.
doi: 10.1038/ncomms15081 |
[8] |
NGUYEN Q H, PERVOLARAKIS N, BLAKE K, et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity[J]. Nat Commun, 2018, 9(1): 2028.
doi: 10.1038/s41467-018-04334-1 |
[9] |
AZIZI E, CARR A J, PLITAS G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell, 2018, 174(5): 1293-1308.e36.
doi: 10.1016/j.cell.2018.05.060 |
[10] |
BARTOSCHEK M, OSKOLKOV N, BOCCI M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing[J]. Nat Commun, 2018, 9(1): 5150.
doi: 10.1038/s41467-018-07582-3 |
[11] |
SEBASTIAN A, HUM N R, MARTIN K A, et al. Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer[J]. Cancers, 2020, 12(5): 1307.
doi: 10.3390/cancers12051307 |
[12] |
SAVAS P, VIRASSAMY B, YE C Z, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis[J]. Nat Med, 2018, 24(7): 986-993.
doi: 10.1038/s41591-018-0078-7 |
[13] |
HOLLERN D P, XU N, THENNAVAN A, et al. B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer[J]. Cell, 2019, 179(5): 1191-1206.e21.
doi: 10.1016/j.cell.2019.10.028 |
[14] |
KUMAR M P, DU J Y, LAGOUDAS G, et al. Analysis of single-cell RNA-seq identifies cell-cell communication associated with tumor characteristics[J]. Cell Rep, 2018, 25(6): 1458-1468.e4.
doi: 10.1016/j.celrep.2018.10.047 |
[15] |
HONG S P, CHAN T E, LOMBARDO Y, et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy[J]. Nat Commun, 2019, 10(1): 3840.
doi: 10.1038/s41467-019-11721-9 |
[16] |
DENG J H, THENNAVAN A, SHAH S, et al. Serial single-cell profiling analysis of metastatic TNBC during Nab-paclitaxel and pembrolizumab treatment[J]. Breast Cancer Res Treat, 2021, 185(1): 85-94.
doi: 10.1007/s10549-020-05936-4 |
[17] |
MUCIÑO-OLMOS E A, VÁZQUEZ-JIMÉNEZ A, AVILA-PONCE DE LEÓN U, et al. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq[J]. Sci Rep, 2020, 10(1): 12728.
doi: 10.1038/s41598-020-69026-7 |
[18] |
GAO R L, KIM C, SEI E, et al. Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer[J]. Nat Commun, 2017, 8(1): 228.
doi: 10.1038/s41467-017-00244-w |
[19] | POWELL A A, TALASAZ A H, ZHANG H Y, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines[J]. PLoS One, 2012, 7(5): e33788. |
[20] |
CHEN Y C, SAHOO S, BRIEN R, et al. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis[J]. Analyst, 2019, 144(24): 7296-7309.
doi: 10.1039/C9AN01358J |
[21] |
ACETO N, BARDIA A, MIYAMOTO D T, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J]. Cell, 2014, 158(5): 1110-1122.
doi: 10.1016/j.cell.2014.07.013 |
[22] |
WANG Y, WATERS J, LEUNG M L, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing[J]. Nature, 2014, 512(7513): 155-160.
doi: 10.1038/nature13600 |
[23] |
EIREW P, STEIF A, KHATTRA J, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution[J]. Nature, 2015, 518(7539): 422-426.
doi: 10.1038/nature13952 |
[24] |
DEMEULEMEESTER J, KUMAR P, MØLLER E K, et al. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing[J]. Genome Biol, 2016, 17(1): 250.
doi: 10.1186/s13059-016-1109-7 |
[25] |
LAWSON D A, BHAKTA N R, KESSENBROCK K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells[J]. Nature, 2015, 526(7571): 131-135.
doi: 10.1038/nature15260 |
[26] |
BRECHBUHL H M, VINOD-PAUL K, GILLEN A E, et al. Analysis of circulating breast cancer cell heterogeneity and interactions with peripheral blood mononuclear cells[J]. Mol Carcinog, 2020, 59(10): 1129-1139.
doi: 10.1002/mc.23242 |
[27] |
DAVIS R T, BLAKE K, MA D, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing[J]. Nat Cell Biol, 2020, 22(3): 310-320.
doi: 10.1038/s41556-020-0477-0 |
[28] |
BAO X W, SHI R, ZHAO T Y, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC[J]. Cancer Immunol Immunother, 2021, 70(1): 189-202.
doi: 10.1007/s00262-020-02669-7 |
[29] | BARRETT T, SUZEK T O, TROUP D B, et al. NCBI GEO: mining millions of expression profiles--database and tools[J]. Nucleic Acids Res, 2005, 33(database issue): D562-D566. |
[30] | GOLDMAN M, CRAFT B, ZHU J C, et al. Abstract 2584: the UCSC Xena system for cancer genomics data visualization and interpretation[J]. Cancer Res, 2017, 77(13 supplement): 2584. |
[31] | PAPATHEODOROU I, MORENO P, MANNING J, et al. Expression Atlas update: from tissues to single cells[J]. Nucleic Acids Res, 2020, 48(D1): D77-D83. |
[32] | REGEV A, TEICHMANN S A, LANDER E S, et al. The human cell atlas[J]. Elife, 2017, 6: e27041. |
[33] | FRANZÉN O, GAN L M, BJÖRKEGREN J L M. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data[J]. Database (Oxford), 2019, 2019: baz046. |
[34] | CAO Y, ZHU J J, JIA P L, et al. scRNASeqDB: a database for RNA-seq based gene expression profiles in human single cells[J]. Genes (Basel), 2017, 8(12): E368. |
[35] |
NGUYEN Q H, PERVOLARAKIS N, NEE K, et al. Experimental considerations for single-cell RNA sequencing approaches[J]. Front Cell Dev Biol, 2018, 6: 108.
doi: 10.3389/fcell.2018.00108 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd