China Oncology ›› 2024, Vol. 34 ›› Issue (10): 903-914.doi: 10.19401/j.cnki.1007-3639.2024.10.001
• Article • Previous Articles Next Articles
OUYANG Fei1(), WANG Yang2, CHEN Yu1, PEI Guoqing1, WANG Ling3, ZHANG Yang1, SHI Lei1(
)
Received:
2024-06-13
Revised:
2024-09-05
Online:
2024-10-30
Published:
2024-11-20
Contact:
SHI Lei
Share article
CLC Number:
OUYANG Fei, WANG Yang, CHEN Yu, PEI Guoqing, WANG Ling, ZHANG Yang, SHI Lei. Construction of the prediction model of breast cancer bone metastasis based on machine learning[J]. China Oncology, 2024, 34(10): 903-914.
Tab. 1
Characteristics of the patients [n (%)]"
Variable | Total | Training set | Validation set | P value | ||
---|---|---|---|---|---|---|
(n=10 106) | (n=70 73) | (n=3 033) | ||||
Age/year | ||||||
<40 | 787 (7.8) | 549 (7.8) | 238 (7.8) | 0.916 | ||
≥40 | 9 319 (92.2) | 6 524 (92.2) | 2 795 (92.2) | |||
Race | ||||||
White | 7 633 (75.5) | 5 357 (75.7) | 2 276 (75.0) | 0.652 | ||
Black | 1 647 (16.3) | 1 137 (16.1) | 510 (16.8) | |||
Others* | 826 (8.2) | 579 (8.2) | 247 (8.1) | |||
Gender | ||||||
Male | 118 (1.2) | 87 (1.2) | 31 (1.0) | 0.429 | ||
Female | 9 988 (98.8) | 6 986 (98.8) | 3 002 (99.0) | |||
Marital status | ||||||
Unmarried# | 5 249 (51.9) | 3 670 (51.9) | 1 579 (52.1) | 0.890 | ||
Married | 4 857 (48.1) | 3 403 (48.1) | 1 454 (47.9) | |||
Laterality | ||||||
Bilateral | 23 (0.2) | 17 (0.2) | 6 (0.2) | 0.593 | ||
Right | 4 895 (48.4) | 3 447 (48.7) | 1 448 (47.7) | |||
Left | 5 188 (51.3) | 3 609 (51.0) | 1 579 (52.1) | |||
Grade | ||||||
Ⅰ | 813 (8.0) | 570 (8.1) | 243 (8.0) | 0.993 | ||
Ⅱ | 4 215 (41.7) | 2 954 (41.8) | 1 261 (41.6) | |||
Ⅲ | 5 001 (49.5) | 3 496 (49.4) | 1 505 (49.6) | |||
Ⅳ | 77 (0.8) | 53 (0.7) | 24 (0.8) | |||
Pathological type | ||||||
Ductal | 8 418 (83.3) | 5 885 (83.2) | 25 33 (83.5) | 0.105 | ||
Others | 683 (6.8) | 500 (7.1) | 183 (6.0) | |||
Lobular | 1 005 (9.9) | 688 (9.7) | 317 (10.5) | |||
ER status | ||||||
Positive | 7 608 (75.3) | 5 300 (74.9) | 2 308 (76.1) | 0.223 | ||
Negative | 2 498 (24.7) | 1 773 (25.1) | 725 (23.9) | |||
PR status | ||||||
Positive | 6 215 (61.5) | 4 340 (61.4) | 1 875 (61.8) | 0.680 | ||
Negative | 3 891 (38.5) | 2 733 (38.6) | 1 158 (38.2) | |||
HER2 status | ||||||
Positive | 2 618 (25.9) | 1 849 (26.1) | 769 (25.4) | 0.422 | ||
Negative | 7 488 (74.1) | 5224 (73.9) | 2 264 (74.6) | |||
Breast subtype | ||||||
HR-/HER2- | 1 447 (14.3) | 1 013 (14.3) | 434 (14.3) | 0.452 | ||
HR-/HER2+ | 893 (8.8) | 646 (9.1) | 247 (8.1) | |||
HR+/HER2- | 6 041 (59.8) | 4 211 (59.5) | 1 830 (60.3) | |||
HR+/HER2+ | 1 725 (17.1) | 1 203 (17.0) | 522 (17.2) | |||
T stage | ||||||
T1 | 1 470 (14.5) | 1 022 (14.4) | 448 (14.8) | 0.501 | ||
T2 | 3 446 (34.1) | 2 385 (33.7) | 1 061 (35.0) | |||
T3 | 1 838 (18.2) | 1 305 (18.5) | 533 (17.6) | |||
T4 | 3 352 (33.2) | 2 361 (33.4) | 991 (32.7) | |||
N stage | ||||||
N0 | 2 370 (23.5) | 1 669 (23.6) | 701 (23.1) | 0.078 | ||
N1 | 4 585 (45.4) | 3 157 (44.6) | 1 428 (47.1) | |||
N2 | 1 352 (13.4) | 978 (13.8) | 374 (12.3) | |||
N3 | 1 799 (17.8) | 1 269 (17.9) | 530 (17.5) | |||
Brain metastasis | ||||||
No | 9 464 (93.6) | 6 630 (93.7) | 2 834 (93.4) | 0.604 | ||
Yes | 642 (6.4) | 443 (6.3) | 199 (6.6) | |||
Liver metastasis | ||||||
No | 7 743 (76.6) | 5 418 (76.6) | 2 325 (76.7) | 0.972 | ||
Yes | 2 363 (23.4) | 1 655 (23.4) | 708 (23.3) | |||
Lung metastasis | ||||||
No | 7 144 (70.7) | 5 001 (70.7) | 2 143 (70.7) | 0.979 | ||
Yes | 2 962 (29.3) | 2 072 (29.3) | 890 (29.3) | |||
Radiotherapy | ||||||
Yes | 3 595 (35.6) | 2 549 (36.0) | 1 046 (34.5) | 0.142 | ||
No/unknown | 6 511 (64.4) | 4 524 (64.0) | 1 987 (65.5) | |||
Chemotherapy | ||||||
Yes | 6 264 (62.0) | 4 408 (62.3) | 1 856 (61.2) | 0.295 | ||
No/unknown | 3 842 (38.0) | 2 665 (37.7) | 1 177 (38.8) | |||
Surgery | ||||||
Yes | 4 232 (41.9) | 2 991 (42.3) | 1 241 (40.9) | 0.208 | ||
No | 5 874 (58.1) | 4 082 (57.7) | 1 792 (59.1) | |||
Bone metastasis | ||||||
No | 3 685 (36.5) | 2 579 (36.5) | 1 106 (36.5) | 1.000 | ||
Yes | 6 421 (63.5) | 4 494 (63.5) | 1 927 (63.5) |
Fig. 1
LASSO regression analysis for clinical feature selection A: Coefficient distributions of models drawn for logarithmic (lambda) sequences at different penalty levels; B:10 times cross-validation error, the first vertical line is the minimum error, the second vertical line is the cross-validation error of 1 times the minimum standard deviation."
Tab. 2
Univariate and multivariate logistic regression analysis of influencing factors for bone metastasis in breast cancer patients in the training set"
Variable | Univariate | Multivariate | Variable | Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | P value | OR (95% CI) | P value | OR (95% CI) | P value | OR (95% CI) | P value | |||||
Race | N stage | |||||||||||
White | - | - | - | - | N0 | - | - | - | - | |||
Black | 0.82 (0.72-0.94) | <0.001 | 0.94 (0.81-1.08) | 0.358 | N1 | 0.88 (0.77-0.99) | 0.040 | 1.00 (0.88-1.15) | 0.956 | |||
Others# | 0.72 (0.61-0.86) | <0.001 | 0.77 (0.64-0.93) | 0.006 | N2 | 0.83 (0.71-0.98) | 0.030 | 1.06 (0.88-1.27) | 0.550 | |||
Grade | N3 | 0.62 (0.54-0.73) | <0.001 | 0.82 (0.69-0.96) | 0.017 | |||||||
Ⅰ | - | - | - | - | Lung metastasis | - | - | - | - | |||
Ⅱ | 0.95 (0.78-1.17) | 0.640 | 1.12 (0.9-1.38) | 0.300 | No | - | - | - | - | |||
Ⅲ | 0.42 (0.34-0.51) | <0.001 | 0.74 (0.6-0.91) | 0.005 | Yes | 0.50 (0.45-0.55) | <0.001 | 0.50 (0.44-0.56) | <0.001 | |||
Ⅳ | 0.25 (0.14-0.45) | <0.001 | 0.42 (0.23-0.78) | 0.006 | Radiotherapy | |||||||
ER status | Yes | - | - | - | - | |||||||
Positive | - | - | - | - | No/unknown | 0.61 (0.55-0.67) | <0.001 | 0.53 (0.48-0.6) | <0.001 | |||
Negative | 0.32 (0.28-0.35) | <0.001 | 0.55 (0.47-0.64) | <0.001 | Chemotherapy | |||||||
PR status | Yes | - | - | - | - | |||||||
Positive | - | - | - | - | No/unknown | 1.72 (1.55-1.9) | <0.001 | 1.23 (1.09-1.38) | <0.001 | |||
Negative | 0.40 (0.36-0.44) | <0.001 | 0.71 (0.62-0.82) | <0.001 | Surgery | |||||||
HER2 status | Yes | - | - | - | - | |||||||
Positive | - | - | - | - | No | 1.76 (1.59-1.94) | <0.001 | 2.01 (1.79-2.24) | <0.001 | |||
Negative | 1.57 (1.41-1.75) | <0.001 | 1.16 (1.03-1.31) | 0.017 |
Fig. 2
Five-fold cross-validation graph of a machine learning algorithm DT: Decision tree; EN: Elastic net; KNN: K-nearest neighbor; LightGBM: Light gradient boosting machine; LR: Logistic regression; NN: Neural network; RF: Random forest; SVM: Support vector machine; Xgboost: Extreme gradient boosting."
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
[2] | MEDEIROS B, ALLAN A L. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives[J]. Int J Mol Sci, 2019, 20(9): 2272. |
[3] |
LIANG Y R, ZHANG H W, SONG X J, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol, 2020, 60: 14-27.
doi: S1044-579X(19)30063-X pmid: 31421262 |
[4] | JIANG Z C, LI J Y, CHEN S J, et al. Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis[J]. Sci Rep, 2020, 10(1): 13675. |
[5] | ZAJKOWSKA M, LUBOWICKA E, FIEDOROWICZ W, et al. Human plasma levels of VEGF-A, VEGF-C, VEGF-D, their soluble receptor-VEGFR-2 and applicability of these parameters as tumor markers in the diagnostics of breast cancer[J]. Pathol Oncol Res, 2019, 25(4): 1477-1486. |
[6] | SIDEY-GIBBONS J A M, SIDEY-GIBBONS C J. Machine learning in medicine: a practical introduction[J]. BMC Med Res Methodol, 2019, 19(1): 64. |
[7] | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. |
[8] |
ANDERSON J P, PARIKH J R, SHENFELD D K, et al. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: an application of machine learning using electronic health records[J]. J Diabetes Sci Technol, 2015, 10(1): 6-18.
doi: 10.1177/1932296815620200 pmid: 26685993 |
[9] | RAHIMIAN F, SALIMI-KHORSHIDI G, PAYBERAH A H, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records[J]. PLoS Med, 2018, 15(11): e1002695. |
[10] | GUO Q P, WANG Y Q, AN J, et al. A prognostic model for patients with gastric signet ring cell carcinoma[J]. Technol Cancer Res Treat, 2021, 20: 15330338211027912. |
[11] |
YANG Y P, MA Y X, SHENG J, et al. A multicenter, retrospective epidemiologic survey of the clinical features and management of bone metastatic disease in China[J]. Chin J Cancer, 2016, 35: 40.
doi: 10.1186/s40880-016-0102-6 pmid: 27112196 |
[12] |
PLUNKETT T A, SMITH P, RUBENS R D. Risk of complications from bone metastases in breast cancer. implications for management[J]. Eur J Cancer, 2000, 36(4): 476-482.
doi: 10.1016/s0959-8049(99)00331-7 pmid: 10717523 |
[13] |
PAREEK A, SINGH O P, YOGI V, et al. Bone metastases incidence and its correlation with hormonal and human epidermal growth factor receptor 2 neu receptors in breast cancer[J]. J Cancer Res Ther, 2019, 15(5): 971-975.
doi: 10.4103/jcrt.JCRT_235_18 pmid: 31603096 |
[14] | Recommended breast cancer surveillance guidelines. American Society of Clinical Oncology[J]. J Clin Oncol, 1997, 15(5): 2149-2156. |
[15] | ROSSELLI DEL TURCO M, PALLI D, CARIDDI A, et al. Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National research council project on breast cancer follow-up[J]. JAMA, 1994, 271(20): 1593-1597. |
[16] | Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. The GIVIO investigators[J]. JAMA, 1994, 271(20): 1587-1592. |
[17] |
MO X L, CHEN X J, IEONG C, et al. Early prediction of clinical response to etanercept treatment in juvenile idiopathic arthritis using machine learning[J]. Front Pharmacol, 2020, 11: 1164.
doi: 10.3389/fphar.2020.01164 pmid: 32848772 |
[18] | ZHU J, ZHENG J X, LI L F, et al. Application of machine learning algorithms to predict central lymph node metastasis in T1-T2, non-invasive, and clinically node negative papillary thyroid carcinoma[J]. Front Med, 2021, 8: 635771. |
[19] | QIU B X, SHEN Z X, WU S, et al. A machine learning-based model for predicting distant metastasis in patients with rectal cancer[J]. Front Oncol, 2023, 13: 1235121. |
[20] | FENG X W, HONG T, LIU W C, et al. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma[J]. Front Endocrinol, 2022, 13: 1054358. |
[21] | XI N M, WANG L, YANG C J. Improving the diagnosis of thyroid cancer by machine learning and clinical data[J]. Sci Rep, 2022, 12(1): 11143. |
[22] | SAKHUJA S, DEVEAUX A, WILSON L E, et al. Patterns of de-novo metastasis and breast cancer-specific mortality by race and molecular subtype in the SEER population-based dataset[J]. Breast Cancer Res Treat, 2021, 186(2): 509-518. |
[23] | GAO T Y, SHAO F. Risk factors and prognostic factors for inflammatory breast cancer with bone metastasis: a population-based study[J]. J Orthop Surg (Hong Kong), 2021, 29(2): 23094990211000144. |
[24] | AKINYEMIJU T, SAKHUJA S, WATERBOR J, et al. Racial/ethnic disparities in de novo metastases sites and survival outcomes for patients with primary breast, colorectal, and prostate cancer[J]. Cancer Med, 2018, 7(4): 1183-1193. |
[25] | CHEN J, ZHU S, XIE X Z, et al. Analysis of clinicopathological factors associated with bone metastasis in breast cancer[J]. J Huazhong Univ Sci Technol (Med Sci), 2013, 33(1): 122-125. |
[26] | LIEDE A, JERZAK K J, HERNANDEZ R K, et al. The incidence of bone metastasis after early-stage breast cancer in Canada[J]. Breast Cancer Res Treat, 2016, 156(3): 587-595. |
[27] | GAO C W, WANG J G, HE P S, et al. Metastatic pattern of breast cancer by histologic grade: a SEER population-based study[J]. Discov Med, 2022, 34(173): 189-197. |
[28] | JAMES J J, EVANS A J, PINDER S E, et al. Bone metastases from breast carcinoma: histopathological-radiological correlations and prognostic features[J]. Br J Cancer, 2003, 89(4): 660-665. |
[29] |
ARPINO G, WEISS H, LEE A V, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance[J]. J Natl Cancer Inst, 2005, 97(17): 1254-1261.
doi: 10.1093/jnci/dji249 pmid: 16145046 |
[30] | ARCIERO C A, GUO Y, JIANG R J, et al. ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER-/HER2+ breast cancer[J]. Clin Breast Cancer, 2019, 19(4): 236-245. |
[31] |
HAYASHI N, IWAMOTO T, QI Y, et al. Bone metastasis-related signaling pathways in breast cancers stratified by estrogen receptor status[J]. J Cancer, 2017, 8(6): 1045-1052.
doi: 10.7150/jca.13690 pmid: 28529618 |
[32] |
LOI S, HAIBE-KAINS B, DESMEDT C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade[J]. J Clin Oncol, 2007, 25(10): 1239-1246.
doi: 10.1200/JCO.2006.07.1522 pmid: 17401012 |
[33] |
KOIZUMI M, YOSHIMOTO M, KASUMI F, et al. An open cohort study of bone metastasis incidence following surgery in breast cancer patients[J]. BMC Cancer, 2010, 10: 381.
doi: 10.1186/1471-2407-10-381 pmid: 20646320 |
[34] |
TAYYEB B, PARVIN M. Pathogenesis of breast cancer metastasis to brain: a comprehensive approach to the signaling network[J]. Mol Neurobiol, 2016, 53(1): 446-454.
doi: 10.1007/s12035-014-9023-z pmid: 25465242 |
[35] | LU X, KANG Y B. Organotropism of breast cancer metastasis[J]. J Mammary Gland Biol Neoplasia, 2007, 12(2/3): 153-162. |
[36] |
YATES L R, KNAPPSKOG S, WEDGE D, et al. Genomic evolution of breast cancer metastasis and relapse[J]. Cancer Cell, 2017, 32(2): 169-184.e7.
doi: S1535-6108(17)30297-0 pmid: 28810143 |
[37] |
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
doi: 10.19401/j.cnki.1007-3639.2023.12.004 |
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association (2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187. | |
[38] | TU Q H, HU C, ZHANG H, et al. Establishment and validation of novel clinical prognosis nomograms for luminal A breast cancer patients with bone metastasis[J]. Biomed Res Int, 2020, 2020: 1972064. |
[39] | GAO B, OU X L, LI M F, et al. Risk stratification system and visualized dynamic nomogram constructed for predicting diagnosis and prognosis in rare male breast cancer patients with bone metastases[J]. Front Endocrinol, 2022, 13: 1013338. |
[40] | PURUSHOTHAM A, SHAMIL E, CARIATI M, et al. Age at diagnosis and distant metastasis in breast cancer: a surprising inverse relationship[J]. Eur J Cancer, 2014, 50(10): 1697-1705. |
[41] |
CHEN X, LI D W. Sequencing facility and DNA source associated patterns of virus-mappable reads in whole-genome sequencing data[J]. Genomics, 2021, 113(1 Pt 2): 1189-1198.
doi: 10.1016/j.ygeno.2020.12.004 pmid: 33301893 |
[42] | LIU G C, CHEN X, LUAN Y H, et al. VirusPredictor: XGBoost-based software to predict virus-related sequences in human data[J]. Bioinformatics, 2024, 40(4): btae192. |
[43] | PALECZEK A, GROCHALA D, RYDOSZ A. Artificial breath classification using XGBoost algorithm for diabetes detection[J]. Sensors, 2021, 21(12): 4187. |
[44] | DONG B T, ZHANG H, DUAN Y Y, et al. Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma[J]. J Transl Med, 2024, 22(1): 455. |
[45] | LI B, EISENBERG N, BEATON D, et al. Using machine learning (XGBoost) to predict outcomes after infrainguinal bypass for peripheral artery disease[J]. Ann Surg, 2024, 279(4): 705-713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd