| [1] |
COWAN A J, GREEN D J, KWOK M, et al. Diagnosis and management of multiple myeloma: a review[J]. JAMA, 2022, 327(5): 464-477.
doi: 10.1001/jama.2022.0003
pmid: 35103762
|
| [2] |
VINCENT RAJKUMAR S. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2024, 99(9): 1802-1824.
doi: 10.1002/ajh.27422
pmid: 38943315
|
| [3] |
BONACCI T, EMANUELE M J. Dissenting degradation: deubiquitinases in cell cycle and cancer[J]. Semin Cancer Biol, 2020, 67(Pt 2): 145-158.
doi: 10.1016/j.semcancer.2020.03.008
pmid: 32201366
|
| [4] |
XU F H, XU X D, DENG H H, et al. The role of deubiquitinase USP2 in driving bladder cancer progression by stabilizing EZH2 to epigenetically silence SOX1 expression[J]. Transl Oncol, 2024, 49: 102104.
|
| [5] |
KUANG Z A, LIU X J, ZHANG N, et al. USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD-L1[J]. Cell Death Differ, 2023, 30(10): 2249-2264.
|
| [6] |
WANG Y Y, ZHANG Y P, LUO H, et al. Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells[J]. Acta Pharm Sin B, 2024, 14(12): 5235-5248.
doi: 10.1016/j.apsb.2024.08.019
pmid: 39807309
|
| [7] |
TONG J, YU Q, XU W B, et al. Montelukast enhances cytocidal effects of carfilzomib in multiple myeloma by inhibiting mTOR pathway[J]. Cancer Biol Ther, 2019, 20(3): 381-390.
doi: 10.1080/15384047.2018.1529112
pmid: 30359543
|
| [8] |
Integrated DNA Technologies[EB/OL]. [2023-02-11]. https://sg.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM.
|
| [9] |
LI Y N, LI S J, WU H J. Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress[J]. Cells, 2022, 11(5): 851.
|
| [10] |
SOGBEIN O, PAUL P, UMAR M, et al. Bortezomib in cancer therapy: mechanisms, side effects, and future proteasome inhibitors[J]. Life Sci, 2024, 358: 123125.
|
| [11] |
PARK J, CHO J, SONG E J. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1161.
doi: 10.1007/s12272-020-01281-8
pmid: 33165832
|
| [12] |
ZANGOOIE A, TAVOOSI S, ARABHOSSEINI M, et al. Ubiquitin-specific proteases (USPs) in leukemia: a systematic review[J]. BMC Cancer, 2024, 24(1): 894.
|
| [13] |
KITAMURA H, HASHIMOTO M. USP2-related cellular signaling and consequent pathophysiological outcomes[J]. Int J Mol Sci, 2021, 22(3): 1209.
|
| [14] |
ZHANG S L, GUO Y, ZHANG S J, et al. Targeting the deubiquitinase USP2 for malignant tumor therapy (review)[J]. Oncol Rep, 2023, 50(4): 176.
|
| [15] |
CHEN S Y, LIU Y Q, ZHOU H C. Advances in the development ubiquitin-specific peptidase (USP) inhibitors[J]. Int J Mol Sci, 2021, 22(9): 4546.
|
| [16] |
ZHANG J R, LIU S Y, LI Q, et al. The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer[J]. Cell Death Differ, 2020, 27(9): 2710-2725.
|
| [17] |
LIU D, FAN Y F, LI J, et al. Inhibition of cFLIP overcomes acquired resistance to sorafenib via reducing ER stress-related autophagy in hepatocellular carcinoma[J]. Oncol Rep, 2018, 40(4): 2206-2214.
|
| [18] |
WERMUTH H R, BADRI T, TAKOV V. Montelukast. In StatPearls. StatPearls Publishing[EB/OL]. (2023-03-22)[2025-03-07]. https://www.ncbi.nlm.nih.gov/books/NBK459301.
|
| [19] |
TSAI M J, CHANG W A, CHUANG C H, et al. Cysteinyl leukotriene pathway and cancer[J]. Int J Mol Sci, 2022, 23(1): 120.
|
| [20] |
TIAN Y C, LIU K, WU D D, et al. The discovery of potent USP2/USP8 dual-target inhibitors for the treatment of breast cancer via structure guided optimization of ML364[J]. Eur J Med Chem, 2024, 268: 116275.
|