中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (1): 68-74.doi: 10.19401/j.cnki.1007-3639.2022.01.009
        
               		徐文浩, 田熙, 艾合太木江·安外尔(
), 瞿元元, 施国海, 张海梁, 叶定伟(
)
                  
        
        
        
        
    
收稿日期:2021-07-07
									
				
											修回日期:2021-09-23
									
				
									
				
											出版日期:2022-01-30
									
				
											发布日期:2022-01-30
									
			通信作者:
					叶定伟
											E-mail:dwyelie@163.com
												
        
               		XU Wenhao, TIAN Xi, Aihetaimujiang·Anwaier (
), QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei(
)
			  
			
			
			
                
        
    
Received:2021-07-07
									
				
											Revised:2021-09-23
									
				
									
				
											Published:2022-01-30
									
				
											Online:2022-01-30
									
			Contact:
					YE Dingwei   
											E-mail:dwyelie@163.com
												文章分享
摘要:
近年来,机器学习和神经网络技术的进步使得人工智能(artificial intelligence,AI)在指导临床诊断、治疗和资源投入等方面产生了巨大影响。在泌尿系统肿瘤领域,AI在改善前列腺癌、肾癌和膀胱癌的诊断和治疗方面取得了诸多进步,已可利用机器学习和神经网络技术自动化进行预后预测、治疗计划优化和患者随访教育等。有证据表明,AI指导可以显著降低泌尿系统肿瘤的诊断和治疗管理的主观性。尽管AI在泌尿系统肿瘤中的应用已经成为现代科技的热点,但对比真实世界的医疗决策时,AI仍然存在明显的局限性。通过对AI目前的优势和不足进行概述,旨在为未来AI在泌尿系统肿瘤的精准化、个性化诊治和长期管理中的应用提供参考。
中图分类号:
徐文浩, 田熙, 艾合太木江·安外尔, 瞿元元, 施国海, 张海梁, 叶定伟. 人工智能在泌尿系统肿瘤中的应用研究进展[J]. 中国癌症杂志, 2022, 32(1): 68-74.
XU Wenhao, TIAN Xi, Aihetaimujiang·Anwaier , QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. A systematic review of current advancements of artificial intelligence in genitourinary cancers[J]. China Oncology, 2022, 32(1): 68-74.
| [1] |  
											  YOU W P, HENNEBERG M. Cancer incidence increasing globally: the role of relaxed natural selection[J]. Evol Appl, 2018, 11(2): 140-152. 
											 												 doi: 10.1111/eva.2018.11.issue-2  | 
										
| [2] |  
											  TROGDON J G, FALCHOOK A D, BASAK R, et al.  Total medicare costs associated with diagnosis and treatment of prostate cancer in elderly men[J]. JAMA Oncol, 2019, 5(1): 60-66. 
											 												 doi: 10.1001/jamaoncol.2018.3701  | 
										
| [3] | ADIR O, POLEY M, CHEN G, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine[J]. Adv Mater, 2020, 32(13): e1901989. | 
| [4] | GALMARINI C M, LUCIUS M. Artificial intelligence: a disruptive tool for a smarter medicine[J]. Eur Rev Med Pharmacol Sci, 2020, 24(13): 7462-7474. | 
| [5] |  
											  HAMAMOTO R, SUVARNA K, YAMADA M, et al.  Application of artificial intelligence technology in oncology: towards the establishment of precision medicine[J]. Cancers (Basel), 2020, 12(12): 3532-3564. 
											 												 doi: 10.3390/cancers12123532  | 
										
| [6] |  
											  HUNSBERGER J, SIMON C, ZYLBERBERG C, et al.  Improving patient outcomes with regenerative medicine: how the regenerative medicine manufacturing society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training[J]. Stem Cells Transl Med, 9(7): 728-733. 
											 												 doi: 10.1002/sctm.19-0389  | 
										
| [7] |  
											  IQBAL U, CELI L A, LI Y J. How can artificial intelligence make medicine more preemptive?[J]. J Med Internet Res, 2020, 22(8): e17211. 
											 												 doi: 10.2196/17211  | 
										
| [8] | KAR A, SUBASH A, RAO V U S. Reactive artificial intelligence using big data in the era of precision medicine[J]. JAMA Surg, 2020, 155(7): 671. | 
| [9] |  
											  KAUL V, ENSLIN S, GROSS S A. History of artificial intelligence in medicine[J]. Gastrointest Endosc, 2020, 92(4): 807-812. 
											 												 doi: 10.1016/j.gie.2020.06.040  | 
										
| [10] |  
											  LANGLOTZ C P, ALLEN B, ERICKSON B J, et al.  A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop[J]. Radiology, 2019, 291(3): 781-791. 
											 												 doi: 10.1148/radiol.2019190613  | 
										
| [11] |  
											  GOLDENBERG S L, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403. 
											 												 doi: 10.1038/s41585-019-0193-3  | 
										
| [12] |  
											  OLCZAK J, FAHLBERG N, MAKI A, et al.  Artificial intelligence for analyzing orthopedic trauma radiographs[J]. Acta Orthop, 2017, 88(6): 581-586. 
											 												 doi: 10.1080/17453674.2017.1344459  | 
										
| [13] | BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. | 
| [14] |  
											  CHEN P H C, GADEPALLI K, MACDONALD R, et al.  An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis[J]. Nat Med, 2019, 25(9): 1453-1457. 
											 												 doi: 10.1038/s41591-019-0539-7  | 
										
| [15] |  
											  BAGHERI M H, AHLMAN M A, LINDENBERG L, et al.  Advances in medical imaging for the diagnosis and management of common genitourinary cancers[J]. Urol Oncol, 2017, 35(7): 473-491. 
											 												 doi: 10.1016/j.urolonc.2017.04.014  | 
										
| [16] |  
											  HEMAL A K, MENON M. Robotics in urology[J]. Curr Opin Urol, 2004, 14(2): 89-93. 
											 												 doi: 10.1097/00042307-200403000-00007  | 
										
| [17] |  
											  MAMDANI M, SLUTSKY A S. Artificial intelligence in intensive care medicine[J]. Intensive Care Med, 2021, 47(2): 147-149. 
											 												 doi: 10.1007/s00134-020-06203-2  | 
										
| [18] |  
											  FRANZMEIER N, KOUTSOULERIS N, BENZINGER T, et al.  Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning[J]. Alzheimers Dement, 2020, 16(3): 501-511. 
											 												 doi: 10.1002/alz.v16.3  | 
										
| [19] |  
											  GOULD M K, HUANG B Z, TAMMEMAGI M C, et al.  Machine learning for early lung cancer identification using routine clinical and laboratory data[J]. Am J Respir Crit Care Med, 2021, 204(4): 445-453. 
											 												 doi: 10.1164/rccm.202007-2791OC  | 
										
| [20] |  
											  AUFFENBERG G B, GHANI K R, RAMANI S, et al.  AskMUSIC: leveraging a clinical registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men[J]. Eur Urol, 2019, 75(6): 901-907. 
											 												 doi: 10.1016/j.eururo.2018.09.050  | 
										
| [21] |  
											  LEE C I, HOUSSAMI N, ELMORE J G, et al.  Pathways to breast cancer screening artificial intelligence algorithm validation[J]. Breast, 2020, 52: 146-149. 
											 												 doi: 10.1016/j.breast.2019.09.005  | 
										
| [22] |  
											  POORTMANS P M P, TAKANEN S, MARTA G N, et al.  Winter is over: the use of artificial intelligence to individualise radiation therapy for breast cancer[J]. Breast, 2020, 49: 194-200. 
											 												 doi: 10.1016/j.breast.2019.11.011  | 
										
| [23] |  
											  BIBAULT J E, GIRAUD P, BURGUN A. Big Data and machine learning in radiation oncology: state of the art and future prospects[J]. Cancer Lett, 2016, 382(1): 110-117. 
											 												 doi: 10.1016/j.canlet.2016.05.033  | 
										
| [24] |  
											  LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. 
											 												 doi: 10.1038/nature14539  | 
										
| [25] |  
											  REEL P S, REEL S, PEARSON E, et al.  Using machine learning approaches for multi-omics data analysis: a review[J]. Biotechnol Adv, 2021, 49: 107739-107763. 
											 												 doi: 10.1016/j.biotechadv.2021.107739  | 
										
| [26] |  
											  SIMON G, DINARDO C D, TAKAHASHI K, et al.  Applying artificial intelligence to address the knowledge gaps in cancer care[J]. Oncologist, 2019, 24(6): 772-782. 
											 												 doi: 10.1634/theoncologist.2018-0257  | 
										
| [27] |  
											  DE SILVA D, RANASINGHE W, BANDARAGODA T, et al.  Machine learning to support social media empowered patients in cancer care and cancer treatment decisions[J]. PLoS One, 2018, 13(10): e0205855. 
											 												 doi: 10.1371/journal.pone.0205855  | 
										
| [28] |  
											  NISSAN N, ALLWEIS T, MENES T, et al.  Breast MRI during lactation: effects on tumor conspicuity using dynamic contrast-enhanced (DCE) in comparison with diffusion tensor imaging (DTI) parametric maps[J]. Eur Radiol, 2020, 30(2): 767-777. 
											 												 doi: 10.1007/s00330-019-06435-x  | 
										
| [29] |  
											  LI C, WANG S, YAN J L, et al.  Characterizing tumor invasiveness of glioblastoma using multiparametric magnetic resonance imaging[J]. J Neurosurg, 2019, 132(5): 1465-1472. 
											 												 doi: 10.3171/2018.12.JNS182926  | 
										
| [30] | PAPAGNO C, MATTAVELLI G, CASAROTTI A, et al. Defective recognition and naming of famous people from voice in patients with unilateral temporal lobe tumours[J]. Neuropsychologia, 2018, 116(Pt B): 194-204. | 
| [31] | SHAO F, HUANG Q, WANG C, et al. Artificial neural networking model for the prediction of early occlusion of bilateral plastic stent placement for inoperable hilar cholangiocarcinoma[J]. Surg Laparosc Endosc Percutan Tech, 2018, 28(2): e54-e58. | 
| [32] |  
											  REHER R, KIM H W, ZHANG C, et al.  A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products[J]. J Am Chem Soc, 2020, 142(9): 4114-4120. 
											 												 doi: 10.1021/jacs.9b13786  | 
										
| [33] |  
											  ALBERTSEN P C. Patient decision-making: where are we going?[J]. Eur Urol, 2019, 75(6): 908-909. 
											 												 doi: 10.1016/j.eururo.2018.10.024  | 
										
| [34] | ARVANITI E, FRICKER K S, MORET M, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning[J]. Sci Rep, 2018, 13(1): 12054-12064. | 
| [35] |  
											  LUCAS M, JANSEN I, SAVCI-HEIJINK C D, et al.  Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies[J]. Virchows Arch, 2019, 475(1): 77-83. 
											 												 doi: 10.1007/s00428-019-02577-x  | 
										
| [36] | FEHR D, VEERARAGHAVAN H, WIBMER A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6265-E6273. | 
| [37] |  
											  NAYAN M, SALARI K, BOZZO A, et al.  Predicting survival after radical prostatectomy: variation of machine learning performance by race[J]. Prostate, 2021, 81(16): 1355-1364. 
											 												 doi: 10.1002/pros.v81.16  | 
										
| [38] |  
											  ZHU Y, MO M, WEI Y, et al.  Epidemiology and genomics of prostate cancer in Asian men[J]. Nat Rev Urol, 2021, 18(5): 282-301. 
											 												 doi: 10.1038/s41585-021-00442-8  | 
										
| [39] | 叶定伟. 守正创新, 笃行致远: 中国前列腺癌诊治历程回顾与展望[J]. 中华泌尿外科杂志, 2020, 41(11): 801-806. | 
| YE D W. Keeping integrity and innovation, striving for the future: retrospect and prospect of diagnosis and treatment of prostate cancer in China[J]. Chin J Urol, 2020(11): 801-806. | |
| [40] |  
											  ROSSI S H, KLATTE T, USHER-SMITH J, et al.  Epidemiology and screening for renal cancer[J]. World J Urol, 2018, 36(9): 1341-1353. 
											 												 doi: 10.1007/s00345-018-2286-7  | 
										
| [41] |  
											  HAN S, HWANG S I, LEE H J. The classification of renal cancer in 3-phase CT images using a deep learning method[J]. J Digit Imaging, 2019, 32(4): 638-643. 
											 												 doi: 10.1007/s10278-019-00230-2  | 
										
| [42] |  
											  HOLDBROOK D A, HUBER R G, MARZINEK J K, et al.  Multiscale modeling of innate immune receptors: endotoxin recognition and regulation by host defense peptides[J]. Pharmacol Res, 2019, 147: 104372-104377. 
											 												 doi: 10.1016/j.phrs.2019.104372  | 
										
| [43] | DREICER R. Tyrosine kinase inhibitors compared with cytokine therapy for metastatic renal cell carcinoma: overview of recent clinical trials differentiating clinical response and adverse effects[J]. Clin Genitourin Cancer, 2006, 5(Suppl 1): S19-S23. | 
| [44] |  
											  UHLIG J, LEHA A, DELONGE L M, et al.  Radiomic features and machine learning for the discrimination of renal tumor histological subtypes: a pragmatic study using clinical-routine computed tomography[J]. Cancers (Basel), 2020, 12(10): 2010-2012. 
											 												 doi: 10.3390/cancers12082010  | 
										
| [45] |  
											  BUCHNER A, KENDLBACHER M, NUHN P, et al.  Outcome assessment of patients with metastatic renal cell carcinoma under systemic therapy using artificial neural networks[J]. Clin Genitourin Cancer, 2012, 10(1): 37-42. 
											 												 doi: 10.1016/j.clgc.2011.10.001  | 
										
| [46] | MA C G, XU W H, XU Y, et al. Identification and validation of novel metastasis-related signatures of clear cell renal cell carcinoma using gene expression databases[J]. Am J Transl Res, 2020, 12(8): 4108-4126. | 
| [47] | XU W H, XU Y, WANG J, et al. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment[J]. Aging (Albany NY), 2019, 11(17): 6999-7020. | 
| [48] |  
											  BRAUN D A, HOU Y, BAKOUNY Z, et al.  Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma[J]. Nat Med, 2020, 26(6): 909-918. 
											 												 doi: 10.1038/s41591-020-0839-y  | 
										
| [49] |  
											  SMITH C C, CHAI S, WASHINGTON A R, et al.  Machine-learning prediction of tumor antigen immunogenicity in the selection of therapeutic epitopes[J]. Cancer Immunol Res, 2019, 7(10): 1591-1604. 
											 												 doi: 10.1158/2326-6066.CIR-19-0155  | 
										
| [50] |  
											  JIANG P, GU S Q, PAN D, et al.  Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558. 
											 												 doi: 10.1038/s41591-018-0136-1  | 
										
| [51] |  
											  XU W H, XU Y, TIAN X, et al.  Large-scale transcriptome profiles reveal robust 20-signatures metabolic prediction models and novel role of G6PC in clear cell renal cell carcinoma[J]. J Cell Mol Med, 2020, 24(16): 9012-9027. 
											 												 doi: 10.1111/jcmm.v24.16  | 
										
| [52] |  
											  XU W, TIAN X, LIU W, et al.  m6A regulator-mediated methylation modification model predicts prognosis, tumor microenvironment characterizations and response to immunotherapies of clear cell renal cell carcinoma[J]. Front Oncol, 2021, 11: 709579-709590. 
											 												 doi: 10.3389/fonc.2021.709579  | 
										
| [53] |  
											  MALATS N, REAL F X. Epidemiology of bladder cancer[J]. Hematol Clin N Am, 2015, 29(2): 177-189. 
											 												 doi: 10.1016/j.hoc.2014.10.001  | 
										
| [54] | EMINAGA O, EMINAGA N, SEMJONOW A, et al. Diagnostic classification of cystoscopic images using deep convolutional neural networks[J]. JCO Clin Cancer Inform, 2018, 2: 1-8. | 
| [55] |  
											  GARAPATI S S, HADJIISKI L, CHA K H, et al.  Urinary bladder cancer staging in CT urography using machine learning[J]. Med Phys, 2017, 44(11): 5814-5823. 
											 												 doi: 10.1002/mp.2017.44.issue-11  | 
										
| [56] |  
											  CHA K H, HADJIISKI L, CHAN H P, et al.  Bladder cancer treatment response assessment in CT using radiomics with deep-learning[J]. Sci Rep, 2017, 7(1): 1-12. 
											 												 doi: 10.1038/s41598-016-0028-x  | 
										
| [1] | 谭洪, 林圣庚, 熊毅. 人工智能赋能癌症协同药物组合预测的现状与挑战[J]. 中国癌症杂志, 2024, 34(9): 807-813. | 
| [2] | 中国抗癌协会泌尿生殖肿瘤整合康复专业委员会. 根治性前列腺切除术围手术期整合康复中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(9): 890-902. | 
| [3] | 潘剑, 叶定伟, 朱耀, 王备合. 激素敏感性前列腺癌患者中PSMA PET/CT衍生参数与循环肿瘤DNA特征之间的相关性分析[J]. 中国癌症杂志, 2024, 34(7): 680-685. | 
| [4] | 中国抗癌协会肿瘤核医学专业委员会, 中国医师协会核医学医师分会. 177Lu-PSMA放射性配体疗法治疗前列腺癌的临床实践专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(7): 702-714. | 
| [5] | 蒋佻宴, 贾田颖, 张琴. 基于胸部增强CT影像组学模型用于胸腺瘤分类的研究[J]. 中国癌症杂志, 2024, 34(6): 581-589. | 
| [6] | 中国肿瘤医院泌尿肿瘤协作组. 膀胱癌早诊早治专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(6): 607-618. | 
| [7] | 庄晗, 胡伟刚, 章真, 王佳舟. 基于深度学习算法的病理学图片淋巴细胞浸润检测[J]. 中国癌症杂志, 2024, 34(4): 409-417. | 
| [8] | 姜梦琦, 韩昱晨, 傅小龙. 基于人工智能的H-E染色全切片病理学图像分析在肺癌研究中的进展[J]. 中国癌症杂志, 2024, 34(3): 306-315. | 
| [9] | 吴洪基, 王海霞, 汪玲, 罗小刚, 邹冬玲. 人工智能在类器官研究中的应用进展与挑战[J]. 中国癌症杂志, 2024, 34(2): 210-219. | 
| [10] | 欧阳飞, 王阳, 陈瑜, 裴国清, 王陵, 张扬, 石磊. 基于机器学习构建乳腺癌骨转移预测模型[J]. 中国癌症杂志, 2024, 34(10): 903-914. | 
| [11] | 王雪梅, 程玉, 齐洁敏. PRMT7通过调控Notch信号转导通路抑制膀胱癌细胞增殖和迁移[J]. 中国癌症杂志, 2023, 33(5): 437-444. | 
| [12] | 唐多才, 周术奎, 张桂银, 刘磊, 廖洪. 非肌层浸润性膀胱癌行初次经尿道膀胱肿瘤电切术的术后复发危险因素分析[J]. 中国癌症杂志, 2023, 33(5): 478-483. | 
| [13] | 刘洋, 胡奕炀, 刘月平, 牛淑瑶, 丁平安, 田园, 郭洪海, 杨沛刚, 张泽, 郑涛, 檀碧波, 范立侨, 李勇, 赵群. 人工智能辅助技术在胃癌新辅助化疗患者HER2表达评估中的价值[J]. 中国癌症杂志, 2023, 33(4): 377-387. | 
| [14] | 郑盛锋, 朱一平, 叶定伟. 2022年度膀胱癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 201-209. | 
| [15] | 潘剑, 朱耀, 戴波, 叶定伟. 2022年度前列腺癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 210-217. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn