中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (9): 779-785.doi: 10.19401/j.cnki.1007-3639.2022.09.004
崔灵珺1,2(), 田超1,2, 程梓轩1,2, 郑佳彬2, 苏菲2, 谭煌英2(
)
收稿日期:
2022-07-01
修回日期:
2022-08-05
出版日期:
2022-09-30
发布日期:
2022-10-24
通信作者:
谭煌英
作者简介:
崔灵珺(ORCID: 0000-0003-3690-7117),学士。基金资助:
CUI Lingjun1,2(), TIAN Chao1,2, CHENG Zixuan1,2, ZHENG Jiabin2, SU Fei2, TAN Huangying2(
)
Received:
2022-07-01
Revised:
2022-08-05
Published:
2022-09-30
Online:
2022-10-24
Contact:
TAN Huangying
文章分享
摘要:
胃肠胰神经内分泌肿瘤(gastroenteropancreatic neuroendocrine neoplasm,GEP-NEN)是一种近年来发病率逐年升高的罕见异质性肿瘤,根据其分化程度,可分为神经内分泌瘤(neuroendocrine tumor,NET)和神经内分泌癌(neuroendocrine carcinoma,NEC)。随着对其发病机制和治疗手段的探索逐渐加深,临床前模型的重要性日渐凸显。本文就目前已发表的细胞系、类器官模型、人源肿瘤异种移植物模型及基因工程小鼠模型等临床前模型进行综述,并探讨这些模型目前的实际应用情况及其优缺点,旨在为未来研究提供新的思路和方向。
中图分类号:
崔灵珺, 田超, 程梓轩, 郑佳彬, 苏菲, 谭煌英. 胃肠胰神经内分泌肿瘤临床前模型的研究进展[J]. 中国癌症杂志, 2022, 32(9): 779-785.
CUI Lingjun, TIAN Chao, CHENG Zixuan, ZHENG Jiabin, SU Fei, TAN Huangying. Advances in preclinical research models for gastroenteropancreatic neuroendocrine neoplasm[J]. China Oncology, 2022, 32(9): 779-785.
表1
人源NET和NEC细胞系详情"
Cell line | Origin | Reference |
---|---|---|
NET cell line | ||
BON-1 | Pancreas | Evers B M, et al[ |
QGP-1 | Pancreas | Kaku M, et al[ |
NT-3 | Pancreas | Benten D, et al[ |
CM | Pancreas | Gueli N, et al[ |
APL1 | Pancreas | Krampitz G W, et al[ |
HuNET | Pancreas | Tillotson L G, et al[ |
GOT1 | Ileum | Kölby L, et al[ |
P-STS | Ileum | Pfragner R, et al[ |
KRJ-I | Ileum | Pfragner R, et al[ |
P0NETCL | Rectum | Alvarez M J, et al[ |
NEC cell line | ||
ECC18 | Esophagus | Fujiwara T, et al[ |
TYUC-1 | Esophagus | Okumura T, et al[ |
NEC-DUE1 | Gastric | Krieg A, et al[ |
A99 | Pancreas | Yachida S, et al[ |
CT-nu-1 | Duodenum | Konno H, et al[ |
TCC-NECT-2 | Duodenum | Yanagihara K, et al[ |
NECS-P/NECS-L | Rectum | Takahashi Y, et al[ |
NEC-DUE2 | Colon | Krieg A, et al[ |
LCC-18 | Colon | Lundqvist M, et al[ |
N-TAK1 | Colon | Yamada T, et al[ |
SS-2 | Colon | Shinji S, et al[ |
[1] |
DASARI A, SHEN C, HALPERIN D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol, 2017, 3(10): 1335-1342.
doi: 10.1001/jamaoncol.2017.0589 pmid: 28448665 |
[2] |
DASARI A, MEHTA K, BYERS L A, et al. Comparative study of lung and extrapulmonary poorly differentiated neuroendocrine carcinomas: a SEER database analysis of 162 983 cases[J]. Cancer, 2018, 124(4): 807-815.
doi: 10.1002/cncr.31124 |
[3] |
JIAO Y C, SHI C J, EDIL B H, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors[J]. Science, 2011, 331(6021): 1199-1203.
doi: 10.1126/science.1200609 pmid: 21252315 |
[4] |
MAFFICINI A, SCARPA A. Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms[J]. Endocr Rev, 2019, 40(2): 506-536.
doi: 10.1210/er.2018-00160 pmid: 30657883 |
[5] |
SCARPA A, CHANG D K, NONES K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours[J]. Nature, 2017, 543(7643): 65-71.
doi: 10.1038/nature21063 |
[6] |
FRANCIS J M, KIEZUN A, RAMOS A H, et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors[J]. Nat Genet, 2013, 45(12): 1483-1486.
doi: 10.1038/ng.2821 pmid: 24185511 |
[7] |
ALVAREZ M J, SUBRAMANIAM P S, TANG L H, et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors[J]. Nat Genet, 2018, 50(7): 979-989.
doi: 10.1038/s41588-018-0138-4 pmid: 29915428 |
[8] |
YACHIDA S, VAKIANI E, WHITE C M, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors[J]. Am J Surg Pathol, 2012, 36(2): 173-184.
doi: 10.1097/PAS.0b013e3182417d36 pmid: 22251937 |
[9] |
PIZZI S, AZZONI C, BASSI D, et al. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract[J]. Cancer, 2003, 98(6): 1273-1282.
pmid: 12973852 |
[10] |
EVERS B M, TOWNSEND C M Jr, UPP J R, et al. Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth[J]. Gastroenterology, 1991, 101(2): 303-311.
pmid: 1712329 |
[11] | KAKU M, NISHIYAMA T, YAGAWA K, et al. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma[J]. Gan, 1980, 71(5): 596-601. |
[12] |
EXNER S, PRASAD V, WIEDENMANN B, et al. Octreotide does not inhibit proliferation in five neuroendocrine tumor cell lines[J]. Front Endocrinol (Lausanne), 2018, 9: 146.
doi: 10.3389/fendo.2018.00146 |
[13] |
BENTEN D, BEHRANG Y, UNRAU L, et al. Establishment of the first well-differentiated human pancreatic neuroendocrine tumor model[J]. Mol Cancer Res, 2018, 16(3): 496-507.
doi: 10.1158/1541-7786.MCR-17-0163 pmid: 29330294 |
[14] | GUELI N, TOTO A, PALMIERI G, et al. In vitro growth of a cell line originated from a human insulinoma[J]. J Exp Clin Cancer Res, 1987, 6(1): 281-285. |
[15] |
KRAMPITZ G W, GEORGE B M, WILLINGHAM S B, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors[J]. Proc Natl Acad Sci USA, 2016, 113(16): 4464-4469.
doi: 10.1073/pnas.1600007113 |
[16] |
KÖLBY L, BERNHARDT P, AHLMAN H, et al. A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake[J]. Am J Pathol, 2001, 158(2): 745-755.
pmid: 11159212 |
[17] | PFRAGNER R, BEHMEL A, HÖGER H, et al. Establishment and characterization of three novel cell lines-P-STS, L-STS, H-STS-derived from a human metastatic midgut carcinoid[J]. Anticancer Res, 2009, 29(6): 1951-1961. |
[18] |
ELVBORN M, SHUBBAR E, FORSSELL-ARONSSON E. Hyperfractionated treatment with 177Lu-octreotate increases tumor response in human small-intestine neuroendocrine GOT1 tumor model[J]. Cancers (Basel), 2022, 14(1): 235.
doi: 10.3390/cancers14010235 |
[19] | LASKARATOS F M, LEVI A, SCHWACH G, et al. Transcriptomic profiling of in vitro tumor-stromal cell paracrine crosstalk identifies involvement of the integrin signaling pathway in the pathogenesis of mesenteric fibrosis in human small intestinal neuroendocrine neoplasms[J]. Front Oncol, 2021, 11: 629665. |
[20] | KRIEG A, MERSCH S, BOECK I, et al. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines[J]. PLoS One, 2014, 9(2): e88713. |
[21] |
YACHIDA S, ZHONG Y, PATRASCU R, et al. Establishment and characterization of a new cell line, A99, from a primary small cell carcinoma of the pancreas[J]. Pancreas, 2011, 40(6): 905-910.
doi: 10.1097/MPA.0b013e3182207a58 |
[22] |
TILLOTSON L G, LODESTRO C, HÖCKER M, et al. Isolation, maintenance, and characterization of human pancreatic islet tumor cells expressing vasoactive intestinal peptide[J]. Pancreas, 2001, 22(1): 91-98.
doi: 10.1097/00006676-200101000-00016 |
[23] |
PFRAGNER R, WIRNSBERGER G, NIEDERLE B, et al. Establishment of a continuous cell line from a human carcinoid of the small intestine (KRJ-I)[J]. Int J Oncol, 1996, 8(3): 513-520.
pmid: 21544390 |
[24] |
ALVAREZ M J, YAN P R, ALPAUGH M L, et al. Reply to ‘H-STS, L-STS and KRJ-I are not authentic GEPNET cell lines’[J]. Nat Genet, 2019, 51(10): 1427-1428.
doi: 10.1038/s41588-019-0509-5 |
[25] |
FUJIWARA T, MOTOYAMA T, ISHIHARA N, et al. Characterization of four new cell lines derived from small-cell gastrointestinal carcinoma[J]. Int J Cancer, 1993, 54(6): 965-971.
pmid: 8392984 |
[26] |
OKUMURA T, SHIMADA Y, OMURA T, et al. microRNA profiles to predict postoperative prognosis in patients with small cell carcinoma of the esophagus[J]. Anticancer Res, 2015, 35(2): 719-727.
pmid: 25667451 |
[27] |
KONNO H, ARAI T, TANAKA T, et al. Antitumor effect of a neutralizing antibody to vascular endothelial growth factor on liver metastasis of endocrine neoplasm[J]. Jpn J Cancer Res, 1998, 89(9): 933-939.
pmid: 9818029 |
[28] |
YANAGIHARA K, KUBO T, MIHARA K, et al. Establishment of a novel cell line from a rare human duodenal poorly differentiated neuroendocrine carcinoma[J]. Oncotarget, 2018, 9(92): 36503-36514.
doi: 10.18632/oncotarget.26367 pmid: 30559933 |
[29] |
TAKAHASHI Y, ONDA M, TANAKA N, et al. Establishment and characterization of two new rectal neuroendocrine cell carcinoma cell lines[J]. Digestion, 2000, 62(4): 262-270.
pmid: 11070410 |
[30] |
LUNDQVIST M, MARK J, FUNA K, et al. Characterisation of a cell line (LCC-18) from a cultured human neuroendocrine-differentiated colonic carcinoma[J]. Eur J Cancer, 1991, 27(12): 1663-1668.
pmid: 1782079 |
[31] | YAMADA T, ONDA M, TANAKA N. Establishment and characterization of a human rectal neuroendocrine cell carcinoma in vitro[J]. J Exp Clin Cancer Res, 2001, 20(4): 561-567. |
[32] |
SHINJI S, SASAKI N, YAMADA T, et al. Establishment and characterization of a novel neuroendocrine carcinoma cell line derived from a human ascending colon tumor[J]. Cancer Sci, 2019, 110(12): 3708-3717.
doi: 10.1111/cas.14221 |
[33] |
FALLETTA S, PARTELLI S, RUBINI C, et al. mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors[J]. Endocr Relat Cancer, 2016, 23(11): 883-891.
doi: 10.1530/ERC-16-0329 |
[34] |
MOHAMED A, BLANCHARD M P, ALBERTELLI M, et al. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures[J]. Endocr Relat Cancer, 2014, 21(5): 691-704.
doi: 10.1530/ERC-14-0086 |
[35] |
MOHAMED A, ROMANO D, SAVEANU A, et al. Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs?[J]. Oncotarget, 2017, 8(25): 41044-41063.
doi: 10.18632/oncotarget.17008 pmid: 28454119 |
[36] |
APRIL-MONN S L, WIEDMER T, SKOWRONSKA M, et al. Three-dimensional primary cell culture: a novel preclinical model for pancreatic neuroendocrine tumors[J]. Neuroendocrinology, 2021, 111(3): 273-287.
doi: 10.1159/000507669 |
[37] |
HOFVING T, ARVIDSSON Y, ALMOBARAK B, et al. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines[J]. Endocr Relat Cancer, 2018, 25(4): X1-X2.
doi: 10.1530/ERC-17-0445e |
[38] | DRIEHUIS E, GRACANIN A, VRIES R G J, et al. Establishment of pancreatic organoids from normal tissue and tumors[J]. STAR Protoc, 2020, 1(3): 100192. |
[39] | DAYTON T, DEN HARTIGH L, MCFALINE J L, et al. Using adult stem cell-derived organoids to model neuroendocrine neoplasms[C]. Neuroendocrinology, 2019, 108(suppl 1): 1-273. |
[40] | ICHIKAWA Y A, HIROSHIMA Y, KOBAYASHI N, et al. Establishment of patient-derived tumor organoid (PDTO) derived from pancreatic neuroendocrine tumor[C]. Neuroendocrinology, 2019, 108(suppl 1): 1-273. |
[41] |
VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691 |
[42] |
LI F, SU Y T, CHENG Y L, et al. Conditional deletion of Men1 in the pancreatic β-cell leads to glucagon-expressing tumor development[J]. Endocrinology, 2015, 156(1): 48-57.
doi: 10.1210/en.2014-1433 pmid: 25343275 |
[43] |
KAWASAKI K, TOSHIMITSU K, MATANO M, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping[J]. Cell, 2020, 183(5): 1420-1435.e21.
doi: 10.1016/j.cell.2020.10.023 pmid: 33159857 |
[44] |
LÕHMUSSAAR K, BORETTO M, CLEVERS H. Human-derived model systems in gynecological cancer research[J]. Trends Cancer, 2020, 6(12): 1031-1043.
doi: 10.1016/j.trecan.2020.07.007 pmid: 32855097 |
[45] | 余苏云, 汪思亮, 贾琦, 等. 临床前癌症模型的研究进展[J]. 肿瘤, 2017, 37(8): 878-882. |
YU S Y, WANG S L, JIA Q, et al. Research progress in preclinical cancer models[J]. Tumor, 2017, 37(8): 878-882. | |
[46] |
GROZINSKY-GLASBERG S, SHIMON I, RUBINFELD H. The role of cell lines in the study of neuroendocrine tumors[J]. Neuroendocrinology, 2012, 96(3): 173-187.
doi: 10.1159/000338793 |
[47] |
MAHARJAN C K, EAR P H, TRAN C G, et al. Pancreatic neuroendocrine tumors: molecular mechanisms and therapeutic targets[J]. Cancers (Basel), 2021, 13(20): 5117.
doi: 10.3390/cancers13205117 |
[48] | 古钎林, 石文贵, 焦作义. PDX模型在肿瘤研究中的应用[J]. 生物医学转化, 2020, 1(1): 50-55. |
GU Q L, SHI W G, JIAO Z Y. The applications of patient-derived tumor xenograft model in cancer research[J]. Biomed Transform, 2020, 1(1): 50-55. | |
[49] |
DETJEN K, HAMMERICH L, ÖZDIRIK B, et al. Models of gastroenteropancreatic neuroendocrine neoplasms: current status and future directions[J]. Neuroendocrinology, 2021, 111(3): 217-236.
doi: 10.1159/000509864 |
[50] |
YANG Z Y, ZHANG L, SERRA S, et al. Establishment and characterization of a human neuroendocrine tumor xenograft[J]. Endocr Pathol, 2016, 27(2): 97-103.
doi: 10.1007/s12022-016-9429-4 pmid: 27067082 |
[51] |
CHAMBERLAIN C E, GERMAN M S, YANG K, et al. A patient-derived xenograft model of pancreatic neuroendocrine tumors identifies sapanisertib as a possible new treatment for everolimus-resistant tumors[J]. Mol Cancer Ther, 2018, 17(12): 2702-2709.
doi: 10.1158/1535-7163.MCT-17-1204 pmid: 30254185 |
[52] |
TANAKA N, ONDA M, SEYA T, et al. Establishment and characterization of a human rectal neuroendocrine carcinoma xenograft into nude mice[J]. Digestion, 1999, 60(2): 117-124.
pmid: 10095152 |
[53] |
FUJII M, SHIMOKAWA M, DATE S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis[J]. Cell Stem Cell, 2016, 18(6): 827-838.
doi: 10.1016/j.stem.2016.04.003 pmid: 27212702 |
[54] |
JIANG J H, WANG D D, YANG M M, et al. Comprehensive characterization of chemotherapeutic efficacy on metastases in the established gastric neuroendocrine cancer patient derived xenograft model[J]. Oncotarget, 2015, 6(17): 15639-15651.
pmid: 25909226 |
[55] | 周云振, Santosh Kumar Jha, 孙海明, 等. 肿瘤小鼠模型建立应用进展[J]. 中华肿瘤防治杂志, 2022, 29(2): 92-101. |
ZHOU Y Z, JHA S, SUN H M, et al. Development and application of tumor mouse model[J]. Chin J Cancer Prev Treat, 2022, 29(2): 92-101. | |
[56] | KAWASAKI K, FUJII M, SATO T. Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models[J]. Dis Model Mech, 2018, 11(2): dmm029595. |
[57] | AGARWAL S K. Exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for basic and preclinical studies[J]. Int J Endocr Oncol, 2014, 1(2): 153-161. |
[58] |
CALVETE O, VARRO A, PRITCHARD D M, et al. A knockin mouse model for human ATP4aR703C mutation identified in familial gastric neuroendocrine tumors recapitulates the premalignant condition of the human disease and suggests new therapeutic strategies[J]. Dis Model Mech, 2016, 9(9): 975-984.
doi: 10.1242/dmm.025890 pmid: 27491072 |
[59] |
ALLIOUACHENE S, TUTTLE R L, BOUMARD S, et al. Constitutively active AKT1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation[J]. J Clin Invest, 2008, 118(11): 3629-3638.
doi: 10.1172/JCI35237 pmid: 18846252 |
[60] |
CASANOVAS O, HICKLIN D J, BERGERS G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors[J]. Cancer Cell, 2005, 8(4): 299-309.
doi: 10.1016/j.ccr.2005.09.005 pmid: 16226705 |
[61] |
YAO J C, FAZIO N, SINGH S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study[J]. Lancet, 2016, 387(10022): 968-977.
doi: S0140-6736(15)00817-X pmid: 26703889 |
[62] |
RAYMOND E, DAHAN L, RAOUL J L, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors[J]. N Engl J Med, 2011, 364(6): 501-513.
doi: 10.1056/NEJMoa1003825 |
[63] |
EFRAT S, TEITELMAN G, ANWAR M, et al. Glucagon gene regulatory region directs oncoprotein expression to neurons and pancreatic alpha cells[J]. Neuron, 1988, 1(7): 605-613.
pmid: 2483103 |
[64] |
ASA S L, LEE Y C, DRUCKER D J. Development of colonic and pancreatic endocrine tumours in mice expressing a glucagon-SV40 T antigen transgene[J]. Virchows Arch, 1996, 427(6): 595-606.
pmid: 8605571 |
[65] | 吉顺荣, 徐晓武, 虞先濬. 神经内分泌肿瘤基础与转化研究进展[J]. 中华胃肠外科杂志, 2021, 24(10): 867-874. |
JI S R, XU X W, YU X J. Advances in basic and translational research in neuroendocrine neoplasms[J]. Chin J Gastrointest Surg, 2021(10):867-874. |
[1] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[2] | 龚美玲, 张琳琳, 郑翠侠. 利用CRISPR/Cas9系统对人A549肺癌细胞NRF2基因的稳定敲除及其功能研究[J]. 中国癌症杂志, 2019, 29(11): 855-861. |
[3] | 刘齐雨,李 可,胥 婧,等. 人胎盘部位滋养细胞肿瘤细胞系的建立及其鉴定[J]. 中国癌症杂志, 2017, 27(7): 521-526. |
[4] | 姜琪琪,张红梅,郭爱,等. Δ133p53表达状态对rmhTNF效应的影响及机制研究[J]. 中国癌症杂志, 2015, 25(4): 287-293. |
[5] | 盛伟琪. 胃肠胰神经内分泌肿瘤病理诊断的规范和进展[J]. 中国癌症杂志, 2013, 23(6): 401-407. |
[6] | 汪姗姗,王宁,于啸,杨晨曦,闫丽萍,王言奎. 宫颈癌细胞系RASSFIA基因启动子及第1外显子区甲基化状态的研究[J]. 中国癌症杂志, 2013, 23(10): 777-783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn