中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (5): 485-495.doi: 10.19401/j.cnki.1007-3639.2025.05.007
王星1,2,3,4(), 肖枘伶1,2,3,4, 白嘉璐1,2,3,4, 蒋德诚1,2,3,4, 周飞晗1,2,3,4, 罗稀元1,2,3,4, 唐玥萌1,2,3,4, 赵玉沛1,2,3,4(
)
收稿日期:
2024-11-21
修回日期:
2025-01-25
出版日期:
2025-05-30
发布日期:
2025-06-10
通信作者:
赵玉沛
作者简介:
王星(ORCID: 0000-0002-0804-2956),博士在读。
基金资助:
WANG Xing1,2,3,4(), XIAO Ruiling1,2,3,4, BAI Jialu1,2,3,4, JIANG Decheng1,2,3,4, ZHOU Feihan1,2,3,4, LUO Xiyuan1,2,3,4, TANG Yuemeng1,2,3,4, ZHAO Yupei1,2,3,4(
)
Received:
2024-11-21
Revised:
2025-01-25
Published:
2025-05-30
Online:
2025-06-10
Contact:
ZHAO Yupei
Supported by:
文章分享
摘要:
肿瘤转移是恶性肿瘤进展过程中最为复杂且影响深远的环节,通常与患者的预后密切相关。约90%的肿瘤相关死亡均与转移有关,且合并转移的实体瘤患者的5年生存率仅为5%~30%。因此,深入理解肿瘤转移的生物学机制,对于揭示肿瘤转移现象的本质并确立新的治疗策略具有重要意义。肿瘤转移的发生需要肿瘤细胞跨越多个生物学屏障,包括脱离原发部位、侵入血管或淋巴管、在血液循环中存活、侵犯远处器官并适应局部环境等多个步骤。为了克服这些挑战,肿瘤细胞必须经历一系列表型转变、基因突变及细胞信号转导通路的异常激活。此外,微环境因素(如血管生成、基质重塑、免疫逃逸等)也在转移过程中发挥关键作用。这些因素相互促进、共同推动了转移灶的形成和生长。嗜器官性转移是肿瘤转移的一种特殊形式。肿瘤细胞与靶器官微环境之间的双向选择与适应性演变,构成了嗜器官性转移的核心驱动因素,涉及细胞-细胞、细胞-基质等多层次的相互作用。具体而言,原位肿瘤的突变位点、信号分子的释放、克服循环压力的能力及与靶器官的信号交流等因素共同调控了嗜器官性转移的选择性。与此同时,靶器官的再生能力、代谢特征、免疫监视机制及基质硬度等因素又进一步促进了转移瘤到达靶器官后的适应性重塑。因此,肿瘤细胞与靶器官之间的双向选择、适应过程构成了一个复杂的动态系统,这为我们理解转移性肿瘤的形成和发展提供了新的视角。目前的研究大多集中在肿瘤转移过程中一些共性生物学特征上。然而,转移性肿瘤的形成不仅依赖于这些共性机制,还与嗜器官性转移的特性密切相关。共性与特性之间的对立统一关系深刻影响着肿瘤转移的最终结果。为此,本文将概述肿瘤转移进程中共性的生物学特征,重点介绍当前对转移瘤和靶器官的双向选择、适应演变机制的认识,最后总结未发生转移的患者转移风险预测模型的构建现状及在合并转移的晚期肿瘤患者综合管理中面临的挑战和机遇,旨在为揭示肿瘤转移的本质、优化临床治疗策略及改善患者预后提供新的理论支持和实践指导。
中图分类号:
王星, 肖枘伶, 白嘉璐, 蒋德诚, 周飞晗, 罗稀元, 唐玥萌, 赵玉沛. 肿瘤嗜器官性转移的双向选择与共同适应机制[J]. 中国癌症杂志, 2025, 35(5): 485-495.
WANG Xing, XIAO Ruiling, BAI Jialu, JIANG Decheng, ZHOU Feihan, LUO Xiyuan, TANG Yuemeng, ZHAO Yupei. The bidirectional selection and shared adaptation mechanisms of tumor organ-specific metastasis[J]. China Oncology, 2025, 35(5): 485-495.
表1
与嗜器官性转移相关的基因及通路突变类型"
Cancer type | Target organs | Genetic mutations | Altered pathways |
---|---|---|---|
Gastric cancer | Peritoneum | ELF3, CDH1 and PIGR mutation | Hippo pathway |
Lung adenocarcinoma | Brain | TP53, EGFR, CREBBP and EPHA5 mutation; TERT amplification | RAS, PI3K, Notch pathway |
Lung adenocarcinoma | Liver | CDKN2A deletion | |
Lung adenocarcinoma | Bone | MYC, YAP1 and MMP13 mutation; CDKN2A/B deletion | RAS pathway |
MSS colorectal cancer | Lung | KRAS mutation | |
Pancreatic cancer | Liver | KRAS mutation | |
Prostate cancer | Bone | AR amplification; PTEN deletion; APC mutation | |
Prostate cancer | Liver | PTEN and RB1 deletion; APC mutation | |
Prostate cancer | Brain | AR amplification | NOTCH pathway |
Prostate cancer | Lung | APC and CTNNB1 mutation | Wnt pathway |
HR+/HER2- breast cancer | Liver | ESR1 mutation | |
HR+/HER2- breast cancer | Bone | CBFB mutation | PI3K pathway |
HR+/HER2- breast cancer | Brain | MAP3K1 mutation | |
Papillary thyroid carcinoma | Bone | BRAF mutation | |
Esophageal cancer | Lung | ERBB2 amplification | |
Melanoma | Lung | NF1 mutation | |
Melanoma | Brain | PTEN mutation | PI3K pathway |
Bladder and urethral cancer | Lung | FGFR3 mutation |
[1] | PAGET S. The distribution of secondary growths in cancer of the breast[J]. Lancet, 1889, 133(3421): 571-573. |
[2] |
BIERMANN J, MELMS J C, AMIN A D, et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis[J]. Cell, 2022, 185(14): 2591-2608.e30.
doi: 10.1016/j.cell.2022.06.007 pmid: 35803246 |
[3] | MADDIPATI R, NORGARD R J, BASLAN T, et al. MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma[J]. Cancer Discov, 2022, 12(2): 542-561. |
[4] |
VAN DE HAAR J, HOES L R, ROEPMAN P, et al. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure[J]. Nat Med, 2021, 27(9): 1553-1563.
doi: 10.1038/s41591-021-01448-w pmid: 34373653 |
[5] |
HU Z, LI Z, MA Z C, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7): 701-708.
doi: 10.1038/s41588-020-0628-z pmid: 32424352 |
[6] |
BIRKBAK N J, MCGRANAHAN N. Cancer genome evolutionary trajectories in metastasis[J]. Cancer Cell, 2020, 37(1): 8-19.
doi: S1535-6108(19)30574-4 pmid: 31935374 |
[7] | KRAUß L, SCHNEIDER C, HESSMANN E, et al. Epigenetic control of pancreatic cancer metastasis[J]. Cancer Metastasis Rev, 2023, 42(4): 1113-1131. |
[8] | TEREKHANOVA N V, KARPOVA A, LIANG W W, et al. Epigenetic regulation during cancer transitions across 11 tumour types[J]. Nature, 2023, 623(7986): 432-441. |
[9] | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
[10] |
KUDO Y, HAYMAKER C, ZHANG J, et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(9): 1521-1530.
doi: S0923-7534(19)45994-2 pmid: 31987408 |
[11] | SUN L, KIENZLER J C, REYNOSO J G, et al. Immune checkpoint blockade induces distinct alterations in the microenvironments of primary and metastatic brain tumors[J]. J Clin Invest, 2023, 133(17): e169314. |
[12] | YANG J Y, LIN P, YANG M W, et al. Integrated genomic and transcriptomic analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal adenocarcinoma[J]. Genome Biol, 2021, 22(1): 4. |
[13] |
XIAO Y S, CONG M, LI J T, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation[J]. Cancer Cell, 2021, 39(3): 423-437.e7.
doi: 10.1016/j.ccell.2020.12.012 pmid: 33450198 |
[14] | NGUYEN B, FONG C, LUTHRA A, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25, 000 patients[J]. Cell, 2022, 185(3): 563-575.e11. |
[15] |
LENGEL H B, MASTROGIACOMO B, CONNOLLY J G, et al. Genomic mapping of metastatic organotropism in lung adenocarcinoma[J]. Cancer Cell, 2023, 41(5): 970-985.e3.
doi: 10.1016/j.ccell.2023.03.018 pmid: 37084736 |
[16] |
LI C, SUN Y D, YU G Y, et al. Integrated omics of metastatic colorectal cancer[J]. Cancer Cell, 2020, 38(5): 734-747.e9.
doi: 10.1016/j.ccell.2020.08.002 pmid: 32888432 |
[17] | CHEN W J, HOFFMANN A D, LIU H P, et al. Organotropism: new insights into molecular mechanisms of breast cancer metastasis[J]. NPJ Precis Oncol, 2018, 2(1): 4. |
[18] | CHEN H N, SHU Y, LIAO F, et al. Genomic evolution and diverse models of systemic metastases in colorectal cancer[J]. Gut, 2022, 71(2): 322-332. |
[19] |
SUN Y F, WU P, ZHANG Z F, et al. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma[J]. Cancer Cell, 2024, 42(1): 135-156.e17.
doi: 10.1016/j.ccell.2023.11.010 pmid: 38101410 |
[20] | AL BAKIR M, HUEBNER A, MARTÍNEZ-RUIZ C, et al. The evolution of non-small cell lung cancer metastases in TRACERx[J]. Nature, 2023, 616(7957): 534-542. |
[21] | JIANG B B, MU Q H, QIU F F, et al. Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors[J]. Nat Commun, 2021, 12(1): 6692. |
[22] | MICHIGAMI T, HIRAGA T, WILLIAMS P J, et al. The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs[J]. Breast Cancer Res Treat, 2002, 75(3): 249-258. |
[23] |
ZHUANG X Q, ZHANG H, LI X Y, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1[J]. Nat Cell Biol, 2017, 19(10): 1274-1285.
doi: 10.1038/ncb3613 pmid: 28892080 |
[24] | REN B, YANG J S, WANG C C, et al. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis[J]. J Hematol Oncol, 2021, 14(1): 120. |
[25] | WANG X, LIU X H, XIAO R L, et al. Histone lactylation dynamics: unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer[J]. Cancer Lett, 2024, 598: 217117. |
[26] | YANG J S, REN B, REN J, et al. Epigenetic reprogramming-induced guanidinoacetic acid synthesis promotes pancreatic cancer metastasis and transcription-activating histone modifications[J]. J Exp Clin Cancer Res, 2023, 42(1): 155. |
[27] | LEIBOLD J, TSANOV K M, AMOR C, et al. Somatic mouse models of gastric cancer reveal genotype-specific features of metastatic disease[J]. Nat Cancer, 2024, 5(2): 315-329. |
[28] |
BOJMAR L, ZAMBIRINIS C P, HERNANDEZ J M, et al. Multi-parametric atlas of the pre-metastatic liver for prediction of metastatic outcome in early-stage pancreatic cancer[J]. Nat Med, 2024, 30(8): 2170-2180.
doi: 10.1038/s41591-024-03075-7 pmid: 38942992 |
[29] |
ZHOU W Y, FONG M Y, MIN Y F, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell, 2014, 25(4): 501-515.
doi: 10.1016/j.ccr.2014.03.007 pmid: 24735924 |
[30] | COX T R, RUMNEY R M H, SCHOOF E M, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase[J]. Nature, 2015, 522(7554): 106-110. |
[31] | ZHANG S X, LIAO X Y, CHEN S W, et al. Large oncosome-loaded VAPA promotes bone-tropic metastasis of hepatocellular carcinoma via formation of osteoclastic pre-metastatic niche[J]. Adv Sci (Weinh), 2022, 9(31): e2201974. |
[32] |
WU Q Y, TIAN P, HE D S, et al. SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches[J]. Cell Res, 2023, 33(6): 464-478.
doi: 10.1038/s41422-023-00810-6 pmid: 37142671 |
[33] | HOSHINO A, COSTA-SILVA B, SHEN T L, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335. |
[34] | ALTEA-MANZANO P, DOGLIONI G, LIU Y W, et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling[J]. Nat Cancer, 2023, 4(3): 344-364. |
[35] |
KLOTZ R, THOMAS A, TENG T, et al. Circulating tumor cells exhibit metastatic tropism and reveal brain metastasis drivers[J]. Cancer Discov, 2020, 10(1): 86-103.
doi: 10.1158/2159-8290.CD-19-0384 pmid: 31601552 |
[36] |
YU T, WANG C Z, XIE M Y, et al. Heterogeneity of CTC contributes to the organotropism of breast cancer[J]. Biomed Pharmacother, 2021, 137: 111314.
doi: 10.1016/j.biopha.2021.111314 pmid: 33581649 |
[37] | LI S N, YANG S, SHI J J, et al. Recognition of the organ-specific mutations in metastatic breast cancer by circulating tumor cells isolated in vivo[J]. Neoplasma, 2021, 68(1): 31-39. |
[38] | ALLEN T A, ASAD D, AMU E, et al. Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential[J]. J Cell Sci, 2019, 132(17): jcs231563. |
[39] |
LIU X, TAFTAF R, KAWAGUCHI M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models[J]. Cancer Discov, 2019, 9(1): 96-113.
doi: 10.1158/2159-8290.CD-18-0065 pmid: 30361447 |
[40] |
MADDIPATI R, STANGER B Z. Pancreatic cancer metastases harbor evidence of polyclonality[J]. Cancer Discov, 2015, 5(10): 1086-1097.
doi: 10.1158/2159-8290.CD-15-0120 pmid: 26209539 |
[41] |
ULINTZ P J, GREENSON J K, WU R, et al. Lymph node metastases in colon cancer are polyclonal[J]. Clin Cancer Res, 2018, 24(9): 2214-2224.
doi: 10.1158/1078-0432.CCR-17-1425 pmid: 29203589 |
[42] |
KÜÇÜKKÖSE E, LAOUKILI J, GORELICK A N, et al. Lymphatic invasion of plakoglobin-dependent tumor cell clusters drives formation of polyclonal lung metastases in colon cancer[J]. Gastroenterology, 2023, 165(2): 429-444.e15.
doi: 10.1053/j.gastro.2023.02.047 pmid: 36906044 |
[43] |
ACETO N, BARDIA A, MIYAMOTO D T, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J]. Cell, 2014, 158(5): 1110-1122.
doi: S0092-8674(14)00927-1 pmid: 25171411 |
[44] | KWAK T J, LEE E. Rapid multilayer microfabrication for modeling organotropic metastasis in breast cancer[J]. Biofabrication, 2020, 13(1). |
[45] | ZHOU X N, LEBLEU V S, FLETCHER-SANANIKONE E, et al. Vascular heterogeneity of tight junction Claudins guides organotropic metastasis[J]. Nat Cancer, 2024, 5(9): 1371-1389. |
[46] | DE CUBA E V, KWAKMAN R, VAN EGMOND M, et al. Understanding molecular mechanisms in peritoneal dissemination of colorectal cancer: future possibilities for personalised treatment by use of biomarkers[J]. Virchows Arch, 2012, 461(3): 231-243. |
[47] |
ZAJAC O, RAINGEAUD J, LIBANJE F, et al. Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas[J]. Nat Cell Biol, 2018, 20(3): 296-306.
doi: 10.1038/s41556-017-0027-6 pmid: 29403038 |
[48] | JAKAB M, LEE K H, UVAROVSKII A, et al. Lung endothelium exploits susceptible tumor cell states to instruct metastatic latency[J]. Nat Cancer, 2024, 5(5): 716-730. |
[49] | ALBRENGUES J, SHIELDS M A, NG D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409): eaao4227. |
[50] | PRICE T T, BURNESS M L, SIVAN A, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone[J]. Sci Transl Med, 2016, 8(340): 340ra73. |
[51] | CORREIA A L, GUIMARAES J C, AUF DER MAUR P, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy[J]. Nature, 2021, 594(7864): 566-571. |
[52] | BORRELLI C, ROBERTS M, ELETTO D, et al. In vivo interaction screening reveals liver-derived constraints to metastasis[J]. Nature, 2024, 632(8024): 411-418. |
[53] | TOMONOBU N, KINOSHITA R, WAKE H, et al. Histidine-rich glycoprotein suppresses the S100A8/A9-mediated organotropic metastasis of melanoma cells[J]. Int J Mol Sci, 2022, 23(18): 10300. |
[54] | SLUITER N, DE CUBA E, KWAKMAN R, et al. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options[J]. Clin Exp Metastasis, 2016, 33(5): 401-416. |
[55] | LIN Y H, WU M H, HUANG Y H, et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 188-203. |
[56] |
RETTIG A R, GANESH K. Cancer cells hijack physiologic metabolic signals to seed liver metastasis[J]. Cancer Res, 2024, 84(10): 1548-1549.
doi: 10.1158/0008-5472.CAN-24-0835 pmid: 38502849 |
[57] | CHENG S J, WAN X Y, YANG L P, et al. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation[J]. J Exp Clin Cancer Res, 2023, 42(1): 342. |
[58] |
FECCI P E, CHAMPION C D, HOJ J, et al. The evolving modern management of brain metastasis[J]. Clin Cancer Res, 2019, 25(22): 6570-6580.
doi: 10.1158/1078-0432.CCR-18-1624 pmid: 31213459 |
[59] | IONKINA A A, BALDERRAMA-GUTIERREZ G, IBANEZ K J, et al. Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer[J]. Breast Cancer Res, 2021, 23(1): 93. |
[60] | PEDERSEN P L, MATHUPALA S, REMPEL A, et al. Mitochondrial bound type Ⅱ hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention[J]. Biochim Biophys Acta, 2002, 1555(1/2/3): 14-20. |
[61] |
DUPUY F, TABARIÈS S, ANDRZEJEWSKI S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer[J]. Cell Metab, 2015, 22(4): 577-589.
doi: 10.1016/j.cmet.2015.08.007 pmid: 26365179 |
[62] |
DAVIS R T, BLAKE K, MA D, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing[J]. Nat Cell Biol, 2020, 22(3): 310-320.
doi: 10.1038/s41556-020-0477-0 pmid: 32144411 |
[63] |
NIMMAKAYALA R K, LEON F, RACHAGANI S, et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40(1): 215-231.
doi: 10.1038/s41388-020-01518-2 pmid: 33110235 |
[64] | VAN WEVERWIJK A, KOUNDOUROS N, IRAVANI M, et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation[J]. Nat Commun, 2019, 10(1): 2698. |
[65] | PINHEIRO L V, WELLEN K E. Fatty acids prime the lung as a site for tumour spread[J]. Nature, 2023, 615(7951): 224-225. |
[66] | RINALDI G, PRANZINI E, VAN ELSEN J, et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition[J]. Mol Cell, 2021, 81(2): 386-397.e7. |
[67] |
WANG X F, CHEN Y, LAN B, et al. Heterogeneity of tyrosine-based melanin anabolism regulates pulmonary and cerebral organotropic colonization microenvironment of melanoma cells[J]. Theranostics, 2022, 12(5): 2063-2079.
doi: 10.7150/thno.69198 pmid: 35265199 |
[68] |
GALASSI C, CHAN T A, VITALE I, et al. The hallmarks of cancer immune evasion[J]. Cancer Cell, 2024, 42(11): 1825-1863.
doi: 10.1016/j.ccell.2024.09.010 pmid: 39393356 |
[69] | HO W J, ERBE R, DANILOVA L, et al. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways[J]. Genome Biol, 2021, 22(1): 154. |
[70] |
YOSHIDA T M, WANG A, HAFLER D A. Basic principles of neuroimmunology[J]. Semin Immunopathol, 2022, 44(5): 685-695.
doi: 10.1007/s00281-022-00951-7 pmid: 35732977 |
[71] |
VAN DEN EYNDEN G G, MAJEED A W, ILLEMANN M, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications[J]. Cancer Res, 2013, 73(7): 2031-2043.
doi: 10.1158/0008-5472.CAN-12-3931 pmid: 23536564 |
[72] |
NOSAKA T, BABA T, TANABE Y, et al. Alveolar macrophages drive hepatocellular carcinoma lung metastasis by generating leukotriene B4[J]. J Immunol, 2018, 200(5): 1839-1852.
doi: 10.4049/jimmunol.1700544 pmid: 29378914 |
[73] | FU Y Y, PAJULAS A, WANG J, et al. Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9[J]. Nat Commun, 2022, 13(1): 3811. |
[74] |
HAN Y, GUO W, REN T T, et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis[J]. Cancer Lett, 2019, 440-441: 116-125.
doi: S0304-3835(18)30625-6 pmid: 30343113 |
[75] |
PUKROP T, DEHGHANI F, CHUANG H N, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way[J]. Glia, 2010, 58(12): 1477-1489.
doi: 10.1002/glia.21022 pmid: 20549749 |
[76] | XING F, LIU Y, WU S Y, et al. Loss of XIST in breast cancer activates MSN-c-met and reprograms microglia via exosomal miRNA to promote brain metastasis[J]. Cancer Res, 2018, 78(15): 4316-4330. |
[77] | KOS K, ASLAM M A, VAN DE VEN R, et al. Tumor-educated Tregs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche[J]. Cell Rep, 2022, 38(9): 110447. |
[78] |
ZHANG W J, BADO I L, HU J Y, et al. The bone microenvironment invigorates metastatic seeds for further dissemination[J]. Cell, 2021, 184(9): 2471-2486.e20.
doi: 10.1016/j.cell.2021.03.011 pmid: 33878291 |
[79] | YU J L, GREEN M D, LI S S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J]. Nat Med, 2021, 27(1): 152-164. |
[80] | LEE J C, MEHDIZADEH S, SMITH J, et al. Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis[J]. Sci Immunol, 2020, 5(52): eaba0759. |
[81] | RETICKER-FLYNN N E, ZHANG W R, BELK J A, et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis[J]. Cell, 2022, 185(11): 1924-1942.e23. |
[82] | LI X B, PAN J H, LIU T Z, et al. Novel TCF21high pericyte subpopulation promotes colorectal cancer metastasis by remodelling perivascular matrix[J]. Gut, 2023, 72(4): 710-721. |
[83] |
WANG H, TIAN L, LIU J, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability[J]. Cancer Cell, 2018, 34(5): 823-839.e7.
doi: S1535-6108(18)30468-9 pmid: 30423299 |
[84] |
ZHENG H Q, BAE Y J, KASIMIR-BAUER S, et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy[J]. Cancer Cell, 2017, 32(6): 731-747.e6.
doi: S1535-6108(17)30472-5 pmid: 29232552 |
[85] |
WANG Z J, KIM S Y, TU W, et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment[J]. Cell Metab, 2023, 35(7): 1209-1226.e13.
doi: 10.1016/j.cmet.2023.04.013 pmid: 37172577 |
[86] | VANIOTIS G, RAYES R F, QI S, et al. Collagen Ⅳ-conveyed signals can regulate chemokine production and promote liver metastasis[J]. Oncogene, 2018, 37(28): 3790-3805. |
[87] | PAN X Y, ZHOU J J, XIAO Q, et al. Cancer-associated fibroblast heterogeneity is associated with organ-specific metastasis in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2021, 14(1): 184. |
[88] |
KURAHARA H, MAEMURA K, MATAKI Y, et al. Lung recurrence and its therapeutic strategy in patients with pancreatic cancer[J]. Pancreatology, 2020, 20(1): 89-94.
doi: S1424-3903(19)30796-3 pmid: 31787525 |
[89] | KOLBEINSSON H, HOPPE A, BAYAT A, et al. Recurrence patterns and postrecurrence survival after curative intent resection for pancreatic ductal adenocarcinoma[J]. Surgery, 2021, 169(3): 649-654. |
[90] |
SASAKI T, NISHIWADA S, NAKAGAWA K, et al. Integrative analysis identifies activated anti-tumor immune microenvironment in lung metastasis of pancreatic cancer[J]. Int J Clin Oncol, 2022, 27(5): 948-957.
doi: 10.1007/s10147-022-02131-x pmid: 35142963 |
[1] | 安天棋, 田建辉, 周奕阳, 罗斌, 阙祖俊, 刘瑶, 于盼, 赵瑞华, 杨蕴. 免疫检查点抑制剂治疗相关胸腔积液的研究进展[J]. 中国癌症杂志, 2025, 35(3): 333-338. |
[2] | 卢愚风, 王晗, 谢亦璠, 江一舟, 邵志敏. 中国乳腺癌重要基础转化研究——进展与展望[J]. 中国癌症杂志, 2025, 35(2): 143-153. |
[3] | 曾成, 王沅怡, 王佳妮, 马飞. 乳腺癌免疫检查点抑制剂治疗的研究进展与探索方向[J]. 中国癌症杂志, 2025, 35(2): 195-204. |
[4] | 肖毅, 吴名, 姚刚. 肿瘤类器官研究现状与展望[J]. 中国癌症杂志, 2024, 34(8): 763-776. |
[5] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[6] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[7] | 陈虹宇, 苏鹏宇, 罗文姿, 庞得全, 王斐然. 放疗中心脏照射剂量体积与自主神经功能紊乱关系的研究[J]. 中国癌症杂志, 2024, 34(11): 1036-1044. |
[8] | 蒋媛媛, 魏文斐, 吴靖雅, 黎华文. 类器官在妇科恶性肿瘤药物筛选中的应用[J]. 中国癌症杂志, 2024, 34(11): 1053-1060. |
[9] | 杨梓怡, 顾丙新, 许晓平, 宋少莉. 18F-FDG和68Ga-FAPI PET/CT在不同恶性肿瘤肺转移诊断中的对比研究[J]. 中国癌症杂志, 2023, 33(9): 829-833. |
[10] | 孙崇源, 赵东兵. 循环肿瘤DNA在胃癌诊疗中的应用进展和展望[J]. 中国癌症杂志, 2023, 33(8): 782-789. |
[11] | 中国临床肿瘤学会免疫治疗专家委员会, 上海市抗癌协会肿瘤生物治疗专业委员会. 基因重组溶瘤腺病毒治疗恶性肿瘤临床应用中国专家共识(2022年版)[J]. 中国癌症杂志, 2023, 33(5): 527-548. |
[12] | 陈祝俊, 丁志敏, 马晓路, 王砚春, 胡昊昀, 卢仁泉, 郭林. 恶性肿瘤患者血流感染病原分析及血糖检测的临床意义[J]. 中国癌症杂志, 2023, 33(10): 927-935. |
[13] | 中国抗癌协会肿瘤内分泌专业委员会. 妇科恶性肿瘤免疫治疗中国专家共识(2023年版)[J]. 中国癌症杂志, 2023, 33(10): 954-967. |
[14] | 肖玉铃, 朱秀之, 江一舟, 邵志敏. 三阴性乳腺癌精准治疗研究的新进展与未来展望[J]. 中国癌症杂志, 2022, 32(8): 669-679. |
[15] | 张羽, 刘强. 液体活检在乳腺癌精准治疗中的应用进展及展望[J]. 中国癌症杂志, 2022, 32(8): 688-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn