中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (8): 799-807.doi: 10.19401/j.cnki.1007-3639.2025.08.009
收稿日期:
2024-10-24
修回日期:
2025-06-06
出版日期:
2025-08-30
发布日期:
2025-09-10
通信作者:
陈盛(ORCID:0000-0003-3530-1287),博士,主任医师。
作者简介:
翟梓涵(ORCID:0009-0007-8067-5444),硕士研究生在读。
Received:
2024-10-24
Revised:
2025-06-06
Published:
2025-08-30
Online:
2025-09-10
Contact:
CHEN Sheng
文章分享
摘要:
乳腺癌是全球范围内女性常见的癌症类型及死亡原因,淋巴结状态是乳腺癌分期的重要信息,与患者预后密切相关。磁共振成像(magnetic resonance imaging,MRI)技术对淋巴结以及新辅助治疗应答效果的评估具有优势,可补充其他影像学检查的不足。标准化评分系统如淋巴结数据和报告系统(Node Reporting and Data System,Node-RADS)通过整合淋巴结大小、边缘、强化模式等特征,可有效地减少评估的主观差异。影像组学通过高通量提取定量特征,将医学图像转换为可挖掘的数据并对其进行分析,进一步整合MRI影像组学、临床病理学特征及分子亚型信息构建多组学模型,可有效地预测腋窝淋巴结转移,为个性化治疗提供生物学依据。人工智能能够通过广泛搜索模型和参数空间来生成预测模型,人工智能驱动的MRI影像分析可有效地预测淋巴结转移及治疗反应。在新辅助化疗评估中,基于深度学习的全自动集成系统(fully automated-integrated system based on deep learning,FAIS-DL)结合多区域动态对比增强-MRI(dynamic contrast enhanced-MRI,DCE-MRI)和临床数据可高效能地预测腋窝病理学完全缓解,将不必要的腋窝淋巴结清扫术率从47.9%降至6.8%。本文就不同发展阶段采用MRI预测乳腺癌淋巴结状态的研究进展作一综述,以期提高临床医师和影像科医师对MRI在乳腺癌淋巴结状态评估及新辅助治疗效果评价中应用的认知,并为精准预测乳腺癌淋巴结状态模型的构建提供帮助。
中图分类号:
翟梓涵, 陈盛. MRI预测乳腺癌淋巴结状态的研究进展及展望[J]. 中国癌症杂志, 2025, 35(8): 799-807.
ZHAI Zihan, CHEN Sheng. Research progress and prospects of MRI in predicting lymph node status in breast cancer[J]. China Oncology, 2025, 35(8): 799-807.
表1
MRI预测乳腺癌淋巴结状态的主要研究进展"
Category | Research advances | References | |
---|---|---|---|
Conventional MRI | DCE | Established the standardized scoring system Node-RADS, providing a quantitative basis for biopsy decision-making | [ |
MRL | Sensitive to the morphology of lymphatic vessels and lymph nodes. Suitable for internal mammary lymph node examination | [ | |
MRS | When the total choline level is <2.4 mmol/L, no metastatic lymph nodes are detected. When it is >15 mmol/L, the probability of lymph node metastasis is 2.69 times that in the situation of total choline level <15 mmol/L | [ | |
DWI | In clinical scenarios of contrast agent allergy or renal insufficiency, morphological assessment of axillary lymph nodes on DWI can distinguish benign from malignant, and clearly visualize internal mammary lymph nodes | [ | |
MRI radiomics | Combined with other features | Radiomics models integrating clinical, pathological, intra-tumoral, and peritumoral (3 or 4 mm) features demonstrate favorable predictive performance | [ |
Based on machine learning | The XGBoost algorithm exhibits relatively stable performance. Multi-spatiotemporal model assisting surgical strategies can effectively reduce the false-negative rate of sentinel lymph nodes | [ | |
Based on deep learning | The CNN model demonstrates good predictive performance. The fully automatic integrated system FAIS-DL, which is based on deep learning, can efficiently predict pathological complete response of axillary lymph nodes, thereby helping to reduce unnecessary axillary lymph node dissection | [ |
[1] | DE BONIFACE J, TVEDSKOV T F, RYDÉN L, et al. Omitting axillary dissection in breast cancer with sentinel-node metastases[J]. N Engl J Med, 2024, 390(13): 1163-1175. |
[2] | LEONG S P, PISSAS A, SCARATO M, et al. The lymphatic system and sentinel lymph nodes: conduit for cancer metastasis[J]. Clin Exp Metastasis, 2022, 39(1): 139-157. |
[3] | SHOJAEE L, ABEDINNEGAD S, NAFISI N, et al. Sentinel node biopsy in early breast cancer patients with palpable axillary node[J]. Asian Pac J Cancer Prev, 2020, 21(6): 1631-1636. |
[4] | KAHLER-RIBEIRO-FONTANA S, PAGAN E, MAGNONI F, et al. Long-term standard sentinel node biopsy after neoadjuvant treatment in breast cancer: a single institution ten-year follow-up[J]. Eur J Surg Oncol, 2021, 47(4): 804-812. |
[5] | VÁZQUEZ J C, PIÑERO A, DE CASTRO F J, et al. The value of sentinel lymph-node biopsy in women with node-positive breast cancer at diagnosis and node-negative tumour after neoadjuvant therapy: a systematic review[J]. Clin Transl Oncol, 2023, 25(2): 417-428. |
[6] | 张冬雪, 李卓琳, 李振辉, 等. 基于DCE-MRI及临床病理特征的模型预测乳腺癌前哨淋巴结状态[J]. 放射学实践, 2022, 37(9): 1104-1108. |
ZHANG D X, LI Z L, LI Z H, et al. Prediction of sentinel lymph node status in breast cancer based on DCE-MRI and clinicopathological models[J]. Radiol Pract, 2022, 37(9): 1104-1108. | |
[7] |
CATTELL R F, KANG J J, REN T, et al. MRI volume changes of axillary lymph nodes as predictor of pathologic complete responses to neoadjuvant chemotherapy in breast cancer[J]. Clin Breast Cancer, 2020, 20(1): 68-79.e1.
doi: S1526-8209(19)30037-0 pmid: 31327729 |
[8] | 姚易明, 向露, 牟方胜, 等. 动态对比增强MRI的动力学分析在乳腺癌同侧腋窝淋巴结转移中的价值[J]. 临床放射学杂志, 2022, 41(12): 2189-2195. |
YAO Y M, XIANG L, MOU F S, et al. The value of kinetic analysis of contrast-enhanced MRI in ipsilateral axillary lymph node metastasis in breast cancer[J]. J Clin Radiol, 2022, 41(12): 2189-2195. | |
[9] |
PEDICONI F, MARONCELLI R, PASCULLI M, et al. Performance of MRI for standardized lymph nodes assessment in breast cancer: are we ready for Node-RADS?[J]. Eur Radiol, 2024, 34(12): 7734-7745.
doi: 10.1007/s00330-024-10828-y pmid: 38867119 |
[10] | PARILLO M, QUATTROCCHI C C. Node reporting and data system 1.0 (node-RADS) for the assessment of oncological patients’ lymph nodes in clinical imaging[J]. J Clin Med, 2025, 14(1): 263. |
[11] | LIU C, HUANG X M, CHEN X B, et al. Use of pretreatment multiparametric MRI to predict tumor regression pattern to neoadjuvant chemotherapy in breast cancer[J]. Acad Radiol, 2023, 30(Suppl 2): S62-S70. |
[12] | 周鑫仪, 冉海涛, 张花. 影像学检查在乳腺癌前哨淋巴结中的应用进展[J]. 中国医学影像学杂志, 2023, 31(5): 545-549. |
ZHOU X Y, RAN H T, ZHANG H. Application progress of imaging examination in sentinel lymph nodes of breast cancer[J]. Chin J Med Imag, 2023, 31(5): 545-549. | |
[13] |
LI C M, MENG S, YANG X H, et al. Sentinel lymph node detection using magnetic resonance lymphography with conventional gadolinium contrast agent in breast cancer: a preliminary clinical study[J]. BMC Cancer, 2015, 15: 213.
doi: 10.1186/s12885-015-1255-4 pmid: 25886638 |
[14] | 杜森, 周青, 鲍志国, 等. 间质磁共振淋巴管造影在检测乳腺癌患者前哨淋巴结转移情况中的应用价值[J]. 实用医学影像杂志, 2020, 21(2): 109-111. |
DU S, ZHOU Q, BAO Z G, et al. The value of interstitial MR lymphangigraphy in detecting sentinel lymphnode metastasis in breast cancer patients[J]. J Pract Med Imag, 2020, 21(2): 109-111. | |
[15] | 车睿贞, 杜森. 探究淋巴管造影与磁共振结合对乳腺癌前哨淋巴结的显像及转移的诊断价值[J]. 黑龙江医学, 2022, 46(7): 839-840. |
CHE R Z, DU S. Diagnostic value of lymphangiography and magnetic resonance imaging in sentinel lymph node imaging and metastasis of breast cancer[J]. Heilongjiang Med J, 2022, 46(7): 839-840. | |
[16] |
HE Y S, LIU O F, SU J, et al. Sentinel lymph node metastasis diagnosis using ultrasound plus magnetic resonance lymphangiography in breast cancer[J]. Gland Surg, 2022, 11(6): 1094-1102.
doi: 10.21037/gs-22-292 pmid: 35800732 |
[17] | YAO N, LI W Q, XU G S, et al. Choline metabolism and its implications in cancer[J]. Front Oncol, 2023, 13: 1234887. |
[18] |
SODANO C, CLAUSER P, DIETZEL M, et al. Clinical relevance of total choline (tCho) quantification in suspicious lesions on multiparametric breast MRI[J]. Eur Radiol, 2020, 30(6): 3371-3382.
doi: 10.1007/s00330-020-06678-z pmid: 32065286 |
[19] | KIM H, PARK H, CHUN Y, et al. Prognostic significance of total choline on in vivo proton MR spectroscopy for prediction of late recurrence in patients with hormone receptor-positive, HER2-negative early breast cancer[J]. PLoS One, 2025, 20(1): e0311012. |
[20] |
IIMA M, HONDA M, SIGMUND E E, et al. Diffusion MRI of the breast: current status and future directions[J]. J Magn Reson Imaging, 2020, 52(1): 70-90.
doi: 10.1002/jmri.26908 pmid: 31520518 |
[21] |
DE CATALDO C, BRUNO F, PALUMBO P, et al. Apparent diffusion coefficient magnetic resonance imaging (ADC-MRI) in the axillary breast cancer lymph node metastasis detection: a narrative review[J]. Gland Surg, 2020, 9(6): 2225-2234.
doi: 10.21037/gs-20-546 pmid: 33447575 |
[22] | CHO P, PARK C S, PARK G E, et al. Diagnostic usefulness of diffusion-weighted MRI for axillary lymph node evaluation in patients with breast cancer[J]. Diagnostics (Basel), 2023, 13(3): 513. |
[23] | 王傲, 赵思奇, 张莫云, 等. 术前磁共振成像技术在乳腺癌腋窝淋巴结转移中的研究进展[J]. 磁共振成像, 2024, 15(9): 183-188. |
WANG A, ZHAO S Q, ZHANG M Y, et al. Research progress of preoperative magnetic resonance imaging techniques in axillary lymph node metastasis of breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(9): 183-188. | |
[24] |
REIS J, BOAVIDA J, TRAN H T, et al. Assessment of preoperative axillary nodal disease burden: breast MRI in locally advanced breast cancer before, during and after neoadjuvant endocrine therapy[J]. BMC Cancer, 2022, 22(1): 702.
doi: 10.1186/s12885-022-09813-9 pmid: 35752785 |
[25] | 苏佳娜, 陈忠, 陈泽文, 等. 磁共振成像在乳腺癌腋窝前哨淋巴结转移中的诊断价值[J]. 实用医技杂志, 2020, 27(2): 170-172. |
SU J N, CHEN Z, CHEN Z W, et al. Diagnostic value of magnetic resonance imaging in axillary sentinel lymph node metastasis of breast cancer[J]. J Pract Med Tech, 2020, 27(2): 170-172. | |
[26] |
LEE H W, KIM S H. Breast magnetic resonance imaging for assessment of internal mammary lymph node status in breast cancer[J]. J Breast Cancer, 2016, 19(2): 191-198.
doi: 10.4048/jbc.2016.19.2.191 pmid: 27382396 |
[27] |
WANGJITRALUCK N, PIPATPAJONG S. Prediction of axillary nodal burden using preoperative magnetic resonance imaging scoring in patients with clinically node-negative breast cancer: a retrospective cohort study[J]. Gland Surg, 2024, 13(12): 2288-2299.
doi: 10.21037/gs-24-379 pmid: 39822365 |
[28] |
ZHANG P Y, SONG X, SUN L H, et al. A novel nomogram model of breast cancer-based imaging for predicting the status of axillary lymph nodes after neoadjuvant therapy[J]. Sci Rep, 2023, 13(1): 5952.
doi: 10.1038/s41598-023-29967-1 pmid: 37045864 |
[29] | LI Z F, MA Q Q, GAO Y, et al. Diagnostic performance of MRI for assessing axillary lymph node status after neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J]. Eur Radiol, 2024, 34(2): 930-942. |
[30] |
IMBRIACO M. Use of pretreatment breast MRI to predict failed sentinel lymph node identification after neoadjuvant chemotherapy[J]. Radiology, 2020, 295(2): 283-284.
doi: 10.1148/radiol.2020200051 pmid: 32129707 |
[31] | BANSAL G J, JAIPAL A, WU G K C, et al. Diagnostic accuracy of magnetic resonance imaging to evaluate axillary lymph node status in breast cancer patients receiving neoadjuvant chemotherapy[J]. Br J Radiol, 2023, 96(1143): 20220904. |
[32] |
CORTINA C S, GOTTSCHALK N, KULKARNI S A, et al. Is breast magnetic resonance imaging an accurate predictor of nodal status after neoadjuvant chemotherapy?[J]. J Surg Res, 2021, 257: 412-418.
doi: 10.1016/j.jss.2020.07.025 pmid: 32892139 |
[33] |
MAKITA K, HAMAMOTO Y, KANZAKI H, et al. Internal mammary node abnormality in imaging studies and treatment outcomes in patients with breast cancer[J]. Oncol Lett, 2024, 27(5): 218.
doi: 10.3892/ol.2024.14352 pmid: 38586202 |
[34] |
YANG K, KIM H, CHOI D H, et al. Optimal radiotherapy for patients with internal mammary lymph node metastasis from breast cancer[J]. Radiat Oncol, 2020, 15(1): 16.
doi: 10.1186/s13014-020-1464-0 pmid: 32122399 |
[35] |
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
doi: 10.1148/radiol.2015151169 pmid: 26579733 |
[36] |
CALABRESE A, SANTUCCI D, LANDI R, et al. Radiomics MRI for lymph node status prediction in breast cancer patients: the state of art[J]. J Cancer Res Clin Oncol, 2021, 147(6): 1587-1597.
doi: 10.1007/s00432-021-03606-6 pmid: 33758997 |
[37] | 刘梅婕, 毛宁, 马恒, 等. 基于影像组学构建乳腺癌前哨淋巴结转移预测模型的研究[J]. 中国中西医结合影像学杂志, 2020, 18(3): 227-231. |
LIU M J, MAO N, MA H, et al. Radiomics based on DCE-MRI for the preoperative prediction of SLN metastasis in breast cancer[J]. Chin Imag J Integr Tradit West Med, 2020, 18(3): 227-231. | |
[38] |
SHI W, SU Y S, ZHANG R, et al. Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor[J]. Cancer Imaging, 2024, 24(1): 122.
doi: 10.1186/s40644-024-00771-y pmid: 39272199 |
[39] | DONG F, LI J, WANG J B, et al. Diagnostic performance of DCE-MRI radiomics in predicting axillary lymph node metastasis in breast cancer patients: a meta-analysis[J]. PLoS One, 2024, 19(12): e0314653. |
[40] |
HONG M, FAN S, XU Z, et al. MRI radiomics and biological correlations for predicting axillary lymph node burden in early-stage breast cancer[J]. J Transl Med, 2024, 22(1): 826.
doi: 10.1186/s12967-024-05619-4 pmid: 39243024 |
[41] | YU Y F, TAN Y J, XIE C M, et al. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J]. JAMA Netw Open, 2020, 3(12): e2028086. |
[42] | GAN L Y, MA M M, LIU Y H, et al. A clinical-radiomics model for predicting axillary pathologic complete response in breast cancer with axillary lymph node metastases[J]. Front Oncol, 2021, 11: 786346. |
[43] |
LIU S S, DU S Y, GAO S, et al. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients[J]. BMC Cancer, 2023, 23(1): 15.
doi: 10.1186/s12885-022-10496-5 pmid: 36604679 |
[44] | CHEN Y S, LI J P, ZHANG J, et al. Radiomic nomogram for predicting axillary lymph node metastasis in patients with breast cancer[J]. Acad Radiol, 2024, 31(3): 788-799. |
[45] | 王小容, 赖宇林, 李松辅, 等. DCE-MRI测定药代动力学定量参数、ADC值、病灶血流TIC与乳腺癌患者病理分型及疗效评估的关系分析[J]. 中国临床医学影像杂志, 2021, 32(3): 175-180. |
WANG X R, LAI Y L, LI S F, et al. Analysis of the relationship between the quantitative parameters of pharmacokinetics, ADC value, TIC of focus blood flow measured by DCE-MRI and pathological classification and curative effect evaluation of breast cancer patients[J]. J China Clin Med Imag, 2021, 32(3): 175-180. | |
[46] |
LIU M J, MAO N, MA H, et al. Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer[J]. Cancer Imaging, 2020, 20(1): 65.
doi: 10.1186/s40644-020-00342-x pmid: 32933585 |
[47] | SHAN Y N, XU W, WANG R, et al. A nomogram combined radiomics and kinetic curve pattern as imaging biomarker for detecting metastatic axillary lymph node in invasive breast cancer[J]. Front Oncol, 2020, 10: 1463. |
[48] |
ZHAO S Q, LI Y F, NING N, et al. Association of peritumoral region features assessed on breast MRI and prognosis of breast cancer: a systematic review and meta-analysis[J]. Eur Radiol, 2024, 34(9): 6108-6120.
doi: 10.1007/s00330-024-10612-y pmid: 38334760 |
[49] | YANG Y T, LIAO T T, LIN X H, et al. Dual-region MRI radiomic analysis indicates increased risk in high-risk breast lesions: bridging intratumoral and peritumoral radiomics for precision decision-making[J]. BMC Cancer, 2025, 25(1): 828. |
[50] | DING J, CHEN S, SERRANO SOSA M, et al. Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer[J]. Acad Radiol, 2022, 29 Suppl 1(Suppl 1): 223-228. |
[51] |
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res, 2017, 19(1): 57.
doi: 10.1186/s13058-017-0846-1 pmid: 28521821 |
[52] | LIU Y, LI X, ZHU L N, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J]. Contrast Media Mol Imaging, 2022, 2022: 6729473. |
[53] |
WANG X, WANG X Y, ZHANG Y J, et al. Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer[J]. Ann Transl Med, 2022, 10(13): 749.
doi: 10.21037/atm-22-2844 pmid: 35957717 |
[54] | WU P Q, GUO F L, WANG J, et al. Development and validation of a dynamic contrast-enhanced magnetic resonance imaging-based habitat and peritumoral radiomic model to predict axillary lymph node metastasis in patients with breast cancer: a retrospective study[J]. Quant Imaging Med Surg, 2024, 14(12): 8211-8226. |
[55] | XU H, YANG A, KANG M, et al. Intratumoral and peritumoral radiomics signature based on DCE-MRI can distinguish between luminal and non-luminal breast cancer molecular subtypes[J]. Sci Rep, 2025, 15(1): 14720. |
[56] | LI C C, LU N, HE Z F, et al. A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7685-7693. |
[57] | LIU Z L, HONG M P, LI X H, et al. Predicting axillary lymph node metastasis in breast cancer patients: a radiomics-based multicenter approach with interpretability analysis[J]. Eur J Radiol, 2024, 176: 111522. |
[58] | LIAO J Y, XU Z Y, XIE Y, et al. Assessing axillary lymph node burden and prognosis in cT1-T2 stage breast cancer using machine learning methods: a retrospective dual-institutional MRI study[J]. J Magn Reson Imaging, 2025, 61(3): 1221-1231. |
[59] | YU H T, LI Q, XIE F C, et al. A machine-learning approach based on multiparametric MRI to identify the risk of non-sentinel lymph node metastasis in patients with early-stage breast cancer[J]. Acta Radiol, 2024, 65(2): 185-194. |
[60] | TAHMASSEBI A, WENGERT G, HELBICH T, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Investig Radiol, 2019, 54: 110-117. |
[61] | YU Y, HE Z, OUYANG J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J]. EBioMedicine, 2021, 69: 103460. |
[62] | SONG S E, WOO O H, CHO Y, et al. Prediction of axillary lymph node metastasis in early-stage triple-negative breast cancer using multiparametric and radiomic features of breast MRI[J]. Acad Radiol, 2023, 30: S25-S37. |
[63] | ZHU T, HUANG Y H, LI W, et al. Multifactor artificial intelligence model assists axillary lymph node surgery in breast cancer after neoadjuvant chemotherapy: multicenter retrospective cohort study[J]. Int J Surg, 2023, 109(11): 3383-3394. |
[64] |
LIANG R, LI F F, YAO J Y, et al. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer[J]. Sci Rep, 2024, 14(1): 16204.
doi: 10.1038/s41598-024-67217-0 pmid: 39003325 |
[65] | CHEN M Z, KONG C L, LIN G H, et al. Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study[J]. EClinicalMedicine, 2023, 63: 102176. |
[66] | REN T, CATTELL R, DUANMU H Y, et al. Convolutional neural network detection of axillary lymph node metastasis using standard clinical breast MRI[J]. Clin Breast Cancer, 2020, 20(3): e301-e308. |
[67] | REN T, LIN S, HUANG P, et al. Convolutional neural network of multiparametric MRI accurately detects axillary lymph node metastasis in breast cancer patients with pre neoadjuvant chemotherapy[J]. Clin Breast Cancer, 2022, 22(2): 170-177. |
[68] | ZHANG X D, LIU M H, REN W Q, et al. Predicting of axillary lymph node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN model[J]. Front Oncol, 2022, 12: 1069733. |
[69] |
WANG Z J, SUN H, LI J, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using CNN based on multiparametric MRI[J]. J Magn Reson Imaging, 2022, 56(3): 700-709.
doi: 10.1002/jmri.28082 pmid: 35108415 |
[70] | YIN X X, HADJILOUCAS S, ZHANG Y C, et al. MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review[J]. Comput Methods Programs Biomed, 2022, 214: 106510. |
[71] | CHEN Y H, WANG L J, DONG X, et al. Deep learning radiomics of preoperative breast MRI for prediction of axillary lymph node metastasis in breast cancer[J]. J Digit Imaging, 2023, 36(4): 1323-1331. |
[72] | GAO J, ZHONG X, LI W J, et al. Attention-based deep learning for the preoperative differentiation of axillary lymph node metastasis in breast cancer on DCE-MRI[J]. J Magn Reson Imaging, 2023, 57(6): 1842-1853. |
[73] | LOKAJ B, DURAND DE GEVIGNEY V, DJEMA D A, et al. Multimodal deep learning fusion of ultrafast-DCE MRI and clinical information for breast lesion classification[J]. Comput Biol Med, 2025, 188: 109721. |
[74] | ZHANG B Y, YU Y M, MAO Y, et al. Development of MRI-based deep learning signature for prediction of axillary response after NAC in breast cancer[J]. Acad Radiol, 2024, 31(3): 800-811. |
[75] | LI Z Y, GAO J, ZHOU H, et al. Multiregional dynamic contrast-enhanced MRI-based integrated system for predicting pathological complete response of axillary lymph node to neoadjuvant chemotherapy in breast cancer: multicentre study[J]. EBioMedicine, 2024, 107: 105311. |
[76] | ZHAO X, BAI J W, GUO Q, et al. Clinical applications of deep learning in breast MRI[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(2): 188864. |
[1] | 曾延玮, 徐智坚, 曹鑫, 吕锟, 李惠明, 高敏, 居胜红, 刘军, 耿道颖. 基于MRI的影像组学和深度学习模型构建:无创鉴别原发颅内弥漫大B细胞淋巴瘤分子亚型[J]. 中国癌症杂志, 2025, 35(8): 735-742. |
[2] | 王孟潇, 樊文栋, 曹菁璟, 陈佳艺, 蔡钢, 曹璐. 基于每日CBCT的乳腺癌术后单周超大分割全乳放疗的位置误差及外扩边界研究[J]. 中国癌症杂志, 2025, 35(8): 752-760. |
[3] | 吴佳辰, 何丽娜, 汤鑫茹, 唐爽. Ptenfl/fl;Trp53fl/fl;Pbsn-iCre+基因编辑小鼠自发形成前列腺癌与乳腺癌的模型构建研究[J]. 中国癌症杂志, 2025, 35(8): 769-775. |
[4] | 吕刚, 王光庆, 郑炎, 唐琴, 陈飞, 俞旭东, 许盛琪, 汤发扬, 朱际飚. 吲哚菁绿在乳腺癌手术切缘评估和范围定位中的有效性、安全性探索:一项单中心、观察性队列研究[J]. 中国癌症杂志, 2025, 35(8): 776-783. |
[5] | 陈战伟, 吴瑶强, 王彦平, 张德健, 于福翔. 浆细胞样树突状细胞与进展期胃癌淋巴结转移的相关性研究[J]. 中国癌症杂志, 2025, 35(8): 792-798. |
[6] | 李心翔, 骆大葵. 直肠癌外科治疗的创新模式探讨[J]. 中国癌症杂志, 2025, 35(7): 631-636. |
[7] | 魏鹏宇, 高加勒, 季冒童, 谭园园, 姚宏伟. 基于人工智能辅助腹腔镜右半结肠癌根治术的手术技能评价[J]. 中国癌症杂志, 2025, 35(7): 637-641. |
[8] | 张钰洋, 刘骞. 结直肠癌新辅助免疫治疗的进展与展望[J]. 中国癌症杂志, 2025, 35(7): 642-656. |
[9] | 钱佳佳, 阮聪, 刘继勇, 徐蕊. 免疫检查点抑制剂在肢端型黑色素瘤治疗中的研究进展[J]. 中国癌症杂志, 2025, 35(7): 702-709. |
[10] | 王红霞, 殷咏梅, 胡夕春. 中国乳腺癌患者BRCA1/2基因检测与临床应用专家共识(2025年版)[J]. 中国癌症杂志, 2025, 35(7): 710-734. |
[11] | 钱芳, 孙永强, 张思涵, 宋田利. 乳腺癌改良根治术后感染的病原学特征、影响因素及炎症因子分析[J]. 中国癌症杂志, 2025, 35(6): 563-569. |
[12] | 鲍正敏, 李乾永, 鲁晓腾, 杨彦举. 分次内CBCT影像引导技术引入DIBH在左侧乳腺癌放疗中的意义[J]. 中国癌症杂志, 2025, 35(6): 578-584. |
[13] | 杜心悦, 邬思雨, 柳光宇. 乳腺癌术后孤立腋窝淋巴结复发的临床特征与治疗进展[J]. 中国癌症杂志, 2025, 35(6): 592-600. |
[14] | 彭东阁, 万子叶, 卢宁. 人工智能在胃癌诊疗和患者预后预测中的应用现状及未来展望[J]. 中国癌症杂志, 2025, 35(5): 496-504. |
[15] | 张钰佳, 马力. 乳腺癌外科治疗领域新技术的进展和争议[J]. 中国癌症杂志, 2025, 35(4): 339-345. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn