中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (8): 808-814.doi: 10.19401/j.cnki.1007-3639.2025.08.010
• 综述 • 上一篇
收稿日期:
2025-03-13
修回日期:
2025-06-11
出版日期:
2025-08-30
发布日期:
2025-09-10
通信作者:
郑向鹏(ORCID: 0000-0001-9953-2143),博士,主任医师,复旦大学附属华东医院肿瘤放疗科主任。
作者简介:
温雅雯(ORCID: 0009-0009-3532-6098),硕士研究生在读。
基金资助:
WEN Yawen(), SUN Li, ZHENG Xiangpeng(
)
Received:
2025-03-13
Revised:
2025-06-11
Published:
2025-08-30
Online:
2025-09-10
Contact:
ZHENG Xiangpeng
Supported by:
文章分享
摘要:
放疗导致晚反应或延迟反应对患者的长期生活质量影响甚大,然而目前对其发生和发展机制的认识非常有限,缺乏有效的风险预测方法和预防干预措施。基于放射生物学和放疗诱导衰老模型的研究提示,放疗能够改变晚反应组织细胞内的表观遗传学特征,诱发逆转座元件序列(特别是内源性逆转录病毒元件)的表达活化,进而触发细胞质内的异常核酸感受器系统(cGAS-STING和MDA5/RIG-I-MAVS)和Ⅰ型干扰素介导的免疫炎症反应。本文对相关研究结果进行综述,认为“放疗-表观遗传学改变-逆转座元件活化”诱导的自身免疫样炎症反应是放疗晚反应发生的不可忽视的机制基础,通过构建基于表观遗传学特征和细胞类型与放疗剂量的晚反应风险模型和发展靶向表观遗传学抑制逆转座元件表达有助于预防或减轻放疗晚反应。
中图分类号:
温雅雯, 孙利, 郑向鹏. 逆转座元件异常活化在放疗晚反应中的研究进展与展望[J]. 中国癌症杂志, 2025, 35(8): 808-814.
WEN Yawen, SUN Li, ZHENG Xiangpeng. Derepression of retrotransposable elements in the development of radiation-induced late effects: advancements and perspective[J]. China Oncology, 2025, 35(8): 808-814.
[1] | ICRP A O B O, STEWART F A, AKLEYEV A V, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context[J]. Ann ICRP, 2012, 41(1/2): 1-322. |
[2] |
BENTZEN S M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology[J]. Nat Rev Cancer, 2006, 6(9): 702-713.
doi: 10.1038/nrc1950 pmid: 16929324 |
[3] |
CARDELLI M. The epigenetic alterations of endogenous retroelements in aging[J]. Mech Ageing Dev, 2018, 174: 30-46.
doi: S0047-6374(17)30291-9 pmid: 29458070 |
[4] |
JOHNSON W E. Endogenous retroviruses in the genomics era[J]. Annu Rev Virol, 2015, 2(1): 135-159.
doi: 10.1146/annurev-virology-100114-054945 pmid: 26958910 |
[5] | DOPKINS N, NIXON D F. Activation of human endogenous retroviruses and its physiological consequences[J]. Nat Rev Mol Cell Biol, 2024, 25(3): 212-222. |
[6] |
DOPKINS N, O’MARA M M, LAWRENCE E, et al. A field guide to endogenous retrovirus regulatory networks[J]. Mol Cell, 2022, 82(20): 3763-3768.
doi: 10.1016/j.molcel.2022.09.011 pmid: 36270247 |
[7] | MERENCIANO M, LARUE A, GARAMBOIS C, et al. Exploring the relationship of transposable elements and ageing: causes and consequences[J]. Genome Biol Evol, 2025, 17(6): evaf088. |
[8] | ZHAO X R, ZONG J B, LIU Y X, et al. Endogenous retroviruses unveiled: a comprehensive review of inflammatory signaling/senescence-related pathways and therapeutic strategies[J]. Aging Dis, 2024, 16(2): 738-756. |
[9] |
WANG F, LI K Y, WANG W S, et al. Sensing of endogenous retroviruses-derived RNA by ZBP1 triggers PANoptosis in DNA damage and contributes to toxic side effects of chemotherapy[J]. Cell Death Dis, 2024, 15(10): 779.
doi: 10.1038/s41419-024-07175-7 pmid: 39465258 |
[10] | SCHMIDLEITHNER L, STÜVE P, FEUERER M. Transposable elements as instructors of the immune system[J]. Nat Rev Immunol, 2025. |
[11] | KASSIOTIS G. The immunological conundrum of endogenous retroelements[J]. Annu Rev Immunol, 2023, 41: 99-125. |
[12] |
LIU X Q, LIU Z P, WU Z M, et al. Resurrection of endogenous retroviruses during aging reinforces senescence[J]. Cell, 2023, 186(2): 287-304.e26.
doi: 10.1016/j.cell.2022.12.017 pmid: 36610399 |
[13] |
MIN X L, ZHENG M L, YU Y Q, et al. Ultraviolet light induces HERV expression to activate RIG-I signalling pathway in keratinocytes[J]. Exp Dermatol, 2022, 31(8): 1165-1176.
doi: 10.1111/exd.14568 pmid: 35332586 |
[14] | WANG R C, LI H D, WU J F, et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation[J]. Nature, 2020, 580(7803): 386-390. |
[15] | MISHRA S, DEY A A, KESAVARDHANA S. Z-nucleic acid sensing and activation of ZBP1 in cellular physiology and disease pathogenesis[J]. Immunol Rev, 2025, 329(1): e13437. |
[16] | LIU Y, MOLCHANOV V, ZHAO Y G, et al. H3K9me3 loss and ERVs activation as hallmarks for osteoarthritis progression and knee joint aging[J]. Osteoarthritis Cartilage, 2025, 33(1): 128-133. |
[17] | CABRÉ N, FONDEVILA M F, WEI W C, et al. Activation of intestinal endogenous retroviruses by alcohol exacerbates liver disease[J]. J Clin Invest, 2025, 135(13): e188541. |
[18] | MEEVASSANA J, SERIRODOM S, PRABSATTRU P, et al. Alu repetitive sequence CpG methylation changes in burn scars[J]. Burns, 2022, 48(6): 1417-1424. |
[19] | SHANKARAPPA B, MAHADEVAN J, MURTHY P, et al. Hypomethylation of long interspersed nucleotide elements and aldehyde dehydrogenase in patients of alcohol use disorder with cirrhosis[J]. DNA Cell Biol, 2023, 42(7): 364-371. |
[20] |
DHILLON P, MULHOLLAND K A, HU H L, et al. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development[J]. Nat Commun, 2023, 14(1): 559.
doi: 10.1038/s41467-023-36212-w pmid: 36732547 |
[21] | RODRIGUEZ-SANABRIA J S, ROSAS-CAMPOS R, VÁZQUEZ-ESQUEDA Á, et al. H3K9me3 demethylation by JMJD2B is regulated by pirfenidone resulting in improved NASH[J]. Sci Rep, 2024, 14(1): 24714. |
[22] |
SCHMIDT J, ERFLE V, MÜLLER W A. Activation of endogenous C-type retroviral genomes by internal alpha-irradiation of mice with 224Radium[J]. Radiat Environ Biophys, 1985, 24(1): 17-25.
pmid: 2983362 |
[23] | The 2007 recommendations of the international commission on radiological protection. ICRP publication 103[J]. Ann ICRP, 2007, 37(2/3/4): 1-332. |
[24] | LEE H G, RONE J M, LI Z R, et al. Disease-associated astrocyte epigenetic memory promotes CNS pathology[J]. bioRxiv, 2024: 2024.01.04.574196. |
[25] | BARNES B M, SHYNE A, GUNN D A, et al. Epigenetics and ultraviolet radiation: implications for skin ageing and carcinogenesis[J]. Skin Health Dis, 2024, 4(6): e410. |
[26] |
BIAN X W, PIIPPONEN M, LIU Z, et al. Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors[J]. Nat Commun, 2024, 15(1): 9286.
doi: 10.1038/s41467-024-53295-1 pmid: 39468077 |
[27] |
PARK J, LEE H J, HAN Y K, et al. Identification of DNA methylation biomarkers for evaluating cardiovascular disease risk from epigenome profiles altered by low-dose ionizing radiation[J]. Clin Epigenetics, 2024, 16(1): 19.
doi: 10.1186/s13148-024-01630-0 pmid: 38303056 |
[28] | AHMAD CHAUDHRY M, OMARUDDIN R A. Differential DNA methylation alterations in radiation-sensitive and-resistant cells[J]. DNA Cell Biol, 2012, 31(6): 908-916. |
[29] | VARSHNEY D, VAVROVA-ANDERSON J, OLER A J, et al. SINE transcription by RNA polymerase Ⅲ is suppressed by histone methylation but not by DNA methylation[J]. Nat Commun, 2015, 6: 6569. |
[30] |
BROCKS D, SCHMIDT C R, DASKALAKIS M, et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats[J]. Nat Genet, 2017, 49(7): 1052-1060.
doi: 10.1038/ng.3889 pmid: 28604729 |
[31] |
MAGER D L, LORINCZ M C. Epigenetic modifier drugs trigger widespread transcription of endogenous retroviruses[J]. Nat Genet, 2017, 49(7): 974-975.
doi: 10.1038/ng.3902 pmid: 28656984 |
[32] | YAO Y, CHEN L F, LI J, et al. Altered DNA methylation and gene expression profiles in radiation-induced heart fibrosis of sprague-dawley rats[J]. Radiat Res, 2022, 198(2): 154-161. |
[33] |
QIU Y Y, GAO Y Y, YU D J, et al. Genome-wide analysis reveals zinc transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF-β signaling pathway[J]. J Invest Dermatol, 2020, 140(1): 94-102.e7.
doi: S0022-202X(19)31795-6 pmid: 31254515 |
[34] |
BECKER B V, KAATSCH L, OBERMAIR R, et al. X-ray irradiation induces subtle changes in the genome-wide distribution of DNA hydroxymethylation with opposing trends in genic and intergenic regions[J]. Epigenetics, 2019, 14(1): 81-93.
doi: 10.1080/15592294.2019.1568807 pmid: 30691379 |
[35] |
TERRAZZINO S, DEANTONIO L, CARGNIN S, et al. DNA methyltransferase gene polymorphisms for prediction of radiation-induced skin fibrosis after treatment of breast cancer: a multifactorial genetic approach[J]. Cancer Res Treat, 2017, 49(2): 464-472.
doi: 10.4143/crt.2016.256 pmid: 27554481 |
[36] |
ISHAK C A, MARSHALL A E, PASSOS D T, et al. An RB-EZH2 complex mediates silencing of repetitive DNA sequences[J]. Mol Cell, 2016, 64(6): 1074-1087.
doi: S1097-2765(16)30666-9 pmid: 27889452 |
[37] | ZHANG Y Y, YU C, AGBORBESONG E, et al. Downregulation of EZH2 promotes renal epithelial cellular senescence and kidney aging[J]. FASEB J, 2025, 39(9): e70605. |
[38] |
SHAO Z Y, LU J W, KHUDAVERDYAN N, et al. Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation[J]. Nat Commun, 2024, 15(1): 6815.
doi: 10.1038/s41467-024-51246-4 pmid: 39122718 |
[39] | GEHRS S, GU Z G, HEY J, et al. DNMT3A-dependent DNA methylation shapes the endothelial enhancer landscape[J]. Nucleic Acids Res, 2025, 53(10): gkaf435. |
[40] |
CAMERON E E, BACHMAN K E, MYÖHÄNEN S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer[J]. Nat Genet, 1999, 21(1): 103-107.
pmid: 9916800 |
[41] |
HUANG W J, HICKSON L J, EIRIN A, et al. Cellular senescence: the good, the bad and the unknown[J]. Nat Rev Nephrol, 2022, 18(10): 611-627.
doi: 10.1038/s41581-022-00601-z pmid: 35922662 |
[42] | SURYADEVARA V, HUDGINS A D, RAJESH A, et al. SenNet recommendations for detecting senescent cells in different tissues[J]. Nat Rev Mol Cell Biol, 2024, 25(12): 1001-1023. |
[43] |
KIM J H, BROWN S L, GORDON M N. Radiation-induced senescence: therapeutic opportunities[J]. Radiat Oncol, 2023, 18(1): 10.
doi: 10.1186/s13014-022-02184-2 pmid: 36639774 |
[44] | BLOKLAND K E C, WATERS D W, SCHULIGA M, et al. Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing[J]. Pharmaceutics, 2020, 12(4): 389. |
[45] | RYAN P, LEE J. In vitro senescence and senolytic functional assays[J]. Biomater Sci, 2025, 13(13): 3509-3531. |
[46] | ZHU J J, AO X K, LIU Y H, et al. TNKS1BP1 mediates AEC Ⅱ senescence and radiation induced lung injury through suppressing EEF2 degradation[J]. Respir Res, 2024, 25(1): 299. |
[47] | DE CECCO M, ITO T, PETRASHEN A P, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation[J]. Nature, 2019, 566(7742): 73-78. |
[48] |
VAN METER M, KASHYAP M, REZAZADEH S, et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age[J]. Nat Commun, 2014, 5: 5011.
doi: 10.1038/ncomms6011 pmid: 25247314 |
[49] |
MAO J, ZHANG Q, ZHUANG Y, et al. Reactivation of senescence-associated endogenous retroviruses by ATF3 drives interferon signaling in aging[J]. Nat Aging, 2024, 4(12): 1794-1812.
doi: 10.1038/s43587-024-00745-6 pmid: 39543280 |
[50] |
KREILING J A. Dysregulation of endogenous retroviruses triggers aging and senescence[J]. Nat Aging, 2024, 4(12): 1670-1672.
doi: 10.1038/s43587-024-00759-0 pmid: 39567758 |
[51] |
YAHYAPOUR R, AMINI P, REZAPOUR S, et al. Radiation-induced inflammation and autoimmune diseases[J]. Mil Med Res, 2018, 5(1): 9.
doi: 10.1186/s40779-018-0156-7 pmid: 29554942 |
[52] |
VIRET C, BYNOE M S. Human endogenous retroviruses expression in autoimmunity[J]. Yale J Biol Med, 2024, 97(4): 521-528.
doi: 10.59249/OIKF8301 pmid: 39703611 |
[53] |
PEZONE A, OLIVIERI F, NAPOLI M V, et al. Inflammation and DNA damage: cause, effect or both[J]. Nat Rev Rheumatol, 2023, 19(4): 200-211.
doi: 10.1038/s41584-022-00905-1 pmid: 36750681 |
[1] | 王孟潇, 樊文栋, 曹菁璟, 陈佳艺, 蔡钢, 曹璐. 基于每日CBCT的乳腺癌术后单周超大分割全乳放疗的位置误差及外扩边界研究[J]. 中国癌症杂志, 2025, 35(8): 752-760. |
[2] | 逯永晋, 石志强, 李彤, 王永胜, 邱鹏飞. 乳腺癌前哨淋巴结阳性豁免腋窝清扫后区域淋巴结放疗的回顾性研究[J]. 中国癌症杂志, 2025, 35(2): 228-236. |
[3] | 胡晓钰, 蔡毓文, 叶富贵, 邵志敏, 胡伟刚, 余科达. BRCA1/2胚系突变对三阴性乳腺癌患者放疗后第二原发肿瘤的影响[J]. 中国癌症杂志, 2024, 34(2): 185-190. |
[4] | 陈刚, 张顺康, 郭绍文, 卢月, 孙丽云, 沈磊, 汪成. 血清TTF-1、PAX-8与乳腺癌术后放疗后甲状腺功能异常的相关性队列研究[J]. 中国癌症杂志, 2024, 34(12): 1100-1107. |
[5] | 陈虹宇, 苏鹏宇, 罗文姿, 庞得全, 王斐然. 放疗中心脏照射剂量体积与自主神经功能紊乱关系的研究[J]. 中国癌症杂志, 2024, 34(11): 1036-1044. |
[6] | 杨彦举, 方应涛, 高大地, 王佳舟, 赵俊, 胡伟刚. uRT-TPS和Monaco-TPS对同一直线加速器在多癌种放射剂量计算方面差异的比较[J]. 中国癌症杂志, 2024, 34(1): 82-89. |
[7] | 王雁, 苏越, 胡涂, 刘绮颖, 姚伟强, 陈勇, 严望军, 章真. 33例接受术前放疗的局部高危软组织肉瘤患者近期疗效和安全性回顾性分析[J]. 中国癌症杂志, 2023, 33(7): 693-700. |
[8] | 毕钊, 王永胜. 1~2枚前哨淋巴结阳性早期乳腺癌患者治疗策略降阶梯新理念[J]. 中国癌症杂志, 2023, 33(6): 560-565. |
[9] | 钟阳, 杨彦举, 赵俊, 胡伟刚. Monaco放疗计划系统的金标准射束模型临床应用可行性分析[J]. 中国癌症杂志, 2023, 33(5): 452-459. |
[10] | 董晓欢, 刘俊, 李洪选, 程妍, 李玥, 余雯, 蔡旭伟, 傅小龙. 食管癌新辅助放化疗中放疗累及野照射的初步研究[J]. 中国癌症杂志, 2023, 33(3): 267-273. |
[11] | 章倩, 方晓燕, 刘娟, 刘进, 程蕾蕾, 孙菁. 早期左侧乳腺癌保乳术后大分割放疗同期瘤床加量的安全性及心脏亚结构剂量评估的重要性研究[J]. 中国癌症杂志, 2022, 32(5): 427-435. |
[12] | 王俊, 何平. 神经侵犯在新辅助放疗后ypⅠ~Ⅱ期直肠癌中的预后预测价值[J]. 中国癌症杂志, 2022, 32(12): 1229-1234. |
[13] | 杨彦举, 钟 阳, 胡伟刚, 高大地, 赵 俊. 不同CT-RED校准曲线对肿瘤靶区和危及器官剂量分布的影响研究[J]. 中国癌症杂志, 2021, 31(9): 828-837. |
[14] | 丁高峰, 郭雷鸣, 陆寓非. 乳腺癌患者HER2和BRCA1表达与放疗敏感性的关系研究[J]. 中国癌症杂志, 2021, 31(7): 589-595. |
[15] | 朱俊军, 葛乃建, 杨业发. 恶性肿瘤植入放射性 125 I粒子出现迁移的研究现状与展望[J]. 中国癌症杂志, 2021, 31(4): 257-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn