中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (9): 815-825.doi: 10.19401/j.cnki.1007-3639.2025.09.001
收稿日期:
2025-09-11
修回日期:
2025-09-25
出版日期:
2025-09-30
发布日期:
2025-10-17
通信作者:
林岩松
作者简介:
赵翊含(ORCID: 0009-0009-1439-4243),博士,住院医师。基金资助:
Received:
2025-09-11
Revised:
2025-09-25
Published:
2025-09-30
Online:
2025-10-17
Contact:
LIN Yansong
Supported by:
文章分享
摘要:
2025年美国甲状腺学会(American Thyroid Association,ATA)发布的《2025版美国甲状腺学会成人分化型甲状腺癌管理指南》在分化型甲状腺癌(differentiated thyroid cancer,DTC)术后核医学诊疗方面进行了多项重要更新。本文以2025版ATA指南提出的DATA临床管理框架[DATA即诊断(Diagnosis)、风险-获益评估(risk/benefit Assessment)、治疗决策(Treatment decisions)及治疗反应评估(response Assessment)]为主线,系统梳理DTC术后评估、放射性碘治疗(radioactive iodine therapy,RAIT)决策、治疗反应动态评估及随访策略等方面的核医学研究进展。基于2015版ATA指南及近期研究证据,2025版ATA指南强调术后疗效评估(包括血清学和影像学评估)对实时修正风险分层的关键意义,并将复发风险由原有的低、中、高危三类细化为低、中-低、中-高和高危四类,以更精准地预测结构性复发风险;在RAIT策略方面,明确低危患者不再常规推荐清甲治疗,以减少不必要的辐射暴露,并指出重组人促甲状腺激素(recombinant human thyroid stimulating hormone,rhTSH)在低、中危患者RAIT前准备中的优先地位。本指南针对诊断性放射性碘全身显像(diagnostic whole body scan,DxWBS)、18F-FDG正电子发射计算机体层成像(positron emission tomography and computed tomography,PET/CT)等核医学分子影像学方法在临床实践中的适用场景予以进一步明确;同时,围绕RAIT后的随访策略、重复RAIT的适应证以及放射性碘难治性DTC(radioactive iodine-refractory DTC,RAIR-DTC)的判定标准与管理原则,本文提炼了2025版ATA指南中相关更新要点。
中图分类号:
赵翊含, 林岩松. 《2025版美国甲状腺学会成人分化型甲状腺癌管理指南》解读:分化型甲状腺癌的核医学诊治进展[J]. 中国癌症杂志, 2025, 35(9): 815-825.
ZHAO Yihan, LIN Yansong. Interpretation of the 2025 American Thyroid Association Management Guidelines for Adult Patients with Differentiated Thyroid Cancer: progress in nuclear medicine diagnosis and treatment of differentiated thyroid cancer[J]. China Oncology, 2025, 35(9): 815-825.
表1
甲状腺切除术后初始RAIT建议总结"
Risk category | Typical RAIT recommendation | Recommended 131I activity level | Goals of therapy |
---|---|---|---|
Low | No | 1.10-1.85 GBq (30-50 mCi) | None or remnant ablation |
Intermediate-low and intermediate-high | Consider | 1.10-3.70 GBq (30-100 mCi) | Remnant ablation +/- adjuvant therapy |
High | Yes | 3.70-5.55 GBq (100-150 mCi) | Remnant ablation and adjuvant therapy |
Distant metastases | Yes | 3.70-7.40 GBq (100-200 mCi) or consider dosimetry | Treatment of known disease, remnant ablation |
[1] |
SINGER P A, COOPER D S, DANIELS G H, et al. Treatment guidelines for patients with thyroid nodules and well-differentiated thyroid cancer. American Thyroid Association[J]. Arch Intern Med, 1996, 156(19): 2165-2172.
pmid: 8885814 |
[2] | RINGEL M D, SOSA J A, BALOCH Z, et al. 2025 American Thyroid Association management guidelines for adult patients with differentiated thyroid cancer[J]. Thyroid, 2025, 35(8): 841-985. |
[3] |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133.
doi: 10.1089/thy.2015.0020 pmid: 26462967 |
[4] |
OZKAN E, SOYDAL C, NAK D, et al. Dynamic risk stratification for predicting the recurrence in differentiated thyroid cancer[J]. Nucl Med Commun, 2017, 38(12): 1055-1059.
doi: 10.1097/MNM.0000000000000766 pmid: 28957841 |
[5] | LEE Y M, CHO J W, HONG S J, et al. Dynamic risk stratification in papillary thyroid carcinoma measuring 1 to 4 cm[J]. J Surg Oncol, 2018, 118(4): 636-643. |
[6] | CANO-PALOMARES A, CASTELLS I, CAPEL I, et al. Response to initial therapy of differentiated thyroid cancer predicts the long-term outcome better than classical risk stratification systems[J]. Int J Endocrinol, 2014, 2014: 591285. |
[7] | MANZARDO O A, CELLINI M, INDIRLI R, et al. TNM 8th edition in thyroid cancer staging: is there an improvement in predicting recurrence[J]. Endocr Relat Cancer, 2020, 27(6): 325-336. |
[8] |
COOPER D S, DOHERTY G M, HAUGEN B R, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2009, 19(11): 1167-1214.
doi: 10.1089/thy.2009.0110 pmid: 19860577 |
[9] | YWATA DE CARVALHO A, KOHLER H F, GOMES C C, et al. Predictive factors for recurrence of papillary thyroid carcinoma: analysis of 4 085 patients[J]. Acta Otorhinolaryngol Ital, 2021, 41(3): 236-242. |
[10] |
VAN VELSEN E F S, STEGENGA M T, VAN KEMENADE F J, et al. Evaluating the 2015 American Thyroid Association risk stratification system in high-risk papillary and follicular thyroid cancer patients[J]. Thyroid, 2019, 29(8): 1073-1079.
doi: 10.1089/thy.2019.0053 pmid: 31140385 |
[11] | LEE J, LEE S G, KIM K, et al. Clinical value of lymph node ratio integration with the 8(th) edition of the UICC TNM classification and 2015 ATA risk stratification systems for recurrence prediction in papillary thyroid cancer[J]. Sci Rep, 2019, 9(1): 13361. |
[12] |
TUTTLE R M, TALA H, SHAH J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system[J]. Thyroid, 2010, 20(12): 1341-1349.
doi: 10.1089/thy.2010.0178 pmid: 21034228 |
[13] |
VAISMAN F, MOMESSO D, BULZICO D A, et al. Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy[J]. Clin Endocrinol, 2012, 77(1): 132-138.
doi: 10.1111/j.1365-2265.2012.04342.x pmid: 22248037 |
[14] |
MALANDRINO P, LATINA A, MARESCALCO S, et al. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin[J]. J Clin Endocrinol Metab, 2011, 96(6): 1703-1709.
doi: 10.1210/jc.2010-2695 pmid: 21450986 |
[15] |
SOYLUK O, BOZTEPE H, ARAL F, et al. Papillary thyroid carcinoma patients assessed to be at low or intermediary risk after primary treatment are at greater risk of long term recurrence if they are thyroglobulin antibody positive or do not have distinctly low thyroglobulin at initial assessment[J]. Thyroid, 2011, 21(12): 1301-1308.
doi: 10.1089/thy.2011.0122 pmid: 22136265 |
[16] | TORLONTANO M, ATTARD M, CROCETTI U, et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases[J]. J Clin Endocrinol Metab, 2004, 89(7): 3402-3407. |
[17] |
BARRES B, KELLY A, KWIATKOWSKI F, et al. Stimulated thyroglobulin and thyroglobulin reduction index predict excellent response in differentiated thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(8): 3462-3472.
doi: 10.1210/jc.2018-02680 pmid: 30785995 |
[18] |
MOMESSO D P, VAISMAN F, YANG S P, et al. Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine[J]. J Clin Endocrinol Metab, 2016, 101(7): 2692-2700.
doi: 10.1210/jc.2015-4290 pmid: 27023446 |
[19] | PATEL A, SHOSTROM V, TREUDE K, et al. Serum thyroglobulin: preoperative levels and factors affecting postoperative optimal timing following total thyroidectomy[J]. Int J Endocrinol, 2019, 2019: 1384651. |
[20] | PORTULANO C, PARODER-BELENITSKY M, CARRASCO N. The Na+/I- symporter (NIS): mechanism and medical impact[J]. Endocr Rev, 2014, 35(1): 106-149. |
[21] |
VIEJA A D L, DOHAN O, LEVY O, et al. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology[J]. Physiol Rev, 2000, 80(3): 1083-1105.
pmid: 10893432 |
[22] | MAUGUEN A, GREWAL R K, AUGENSEN F, et al. The use of single-timepoint images to link administered radioiodine activity (MBq) to a prescribed lesion radiation-absorbed dose (cGy): a regression-based prediction interval tool for the management of well-differentiated thyroid cancer patients[J]. Eur J Nucl Med Mol Imaging, 2023, 50(10): 2971-2983. |
[23] |
VAN NOSTRAND D, AIKEN M, ATKINS F, et al. The utility of radioiodine scans prior to iodine 131 ablation in patients with well-differentiated thyroid cancer[J]. Thyroid, 2009, 19(8): 849-855.
doi: 10.1089/thy.2008.0419 pmid: 19281428 |
[24] | CHEN M K, YASREBI M, SAMII J, et al. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer[J]. Thyroid, 2012, 22(3): 304-309. |
[25] | WONG K K, SISSON J C, KORAL K F, et al. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT[J]. AJR Am J Roentgenol, 2010, 195(3): 730-736. |
[26] | AVRAM A M, FIG L M, FREY K A, et al. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging[J]. J Clin Endocrinol Metab, 2013, 98(3): 1163-1171. |
[27] |
AVRAM A M, ESFANDIARI N H, WONG K K. Preablation 131-I scans with SPECT/CT contribute to thyroid cancer risk stratification and 131-I therapy planning[J]. J Clin Endocrinol Metab, 2015, 100(5): 1895-1902.
doi: 10.1210/jc.2014-4043 pmid: 25734251 |
[28] | SONG H, MOSCI C, AKATSU H, et al. Diagnostic 123I whole body scan prior to ablation of thyroid remnant in patients with papillary thyroid cancer: implications for clinical management[J]. Clin Nucl Med, 2018, 43(10): 705-709. |
[29] | KIM S, CHUNG J K, MIN H S, et al. Expression patterns of glucose transporter-1 gene and thyroid specific genes in human papillary thyroid carcinoma[J]. Nucl Med Mol Imaging, 2014, 48(2): 91-97. |
[30] | ABELLEIRA E, JERKOVICH F. Dynamic risk assessment in patients with differentiated thyroid cancer[J]. Rev Endocr Metab Disord, 2024, 25(1): 79-93. |
[31] |
CHO J W, LEE Y M, LEE Y H, et al. Dynamic risk stratification system in post-lobectomy low-risk and intermediate-risk papillary thyroid carcinoma patients[J]. Clin Endocrinol, 2018, 89(1): 100-109.
doi: 10.1111/cen.13721 pmid: 29672893 |
[32] |
PARK J H, MOON G S, NAM K T, et al. Optimal timing of initiating dynamic risk stratification during the early postoperative period in patients with differentiated thyroid carcinoma after thyroidectomy and radioactive iodine remnant ablation[J]. Ann Surg Oncol, 2021, 28(11): 6580-6589.
doi: 10.1245/s10434-021-09721-5 pmid: 33677764 |
[33] | PITOIA F, JERKOVICH F. Dynamic risk assessment in patients with differentiated thyroid cancer[J]. Endocr Relat Cancer, 2019, 26(10): R553-R566. |
[34] |
SHAH S, BOUCAI L. Effect of age on response to therapy and mortality in patients with thyroid cancer at high risk of recurrence[J]. J Clin Endocrinol Metab, 2018, 103(2): 689-697.
doi: 10.1210/jc.2017-02255 pmid: 29220531 |
[35] | TIAN T, KOU Y, HUANG R, et al. Prognosis of high-risk papillary thyroid cancer patients with pre-ablation stimulated tg <1 ng/mL[J]. Endocr Pract, 2019, 25(3): 220-225. |
[36] | LEBOULLEUX S, BOURNAUD C, CHOUGNET C N, et al. Thyroidectomy without radioiodine in patients with low-risk thyroid cancer[J]. N Engl J Med, 2022, 386(10): 923-932. |
[37] | GIOVANELLA L, DEANDREIS D, VRACHIMIS A, et al. Molecular Imaging and theragnostics of thyroid cancers[J]. Cancers (Basel), 2022, 14(5): 1272. |
[38] |
BARTEL T B, MAGEREFTEH S, AVRAM A M, et al. SNMMI procedure standard for scintigraphy for differentiated thyroid cancer[J]. J Nucl Med Technol, 2020, 48(3): 202-209.
doi: 10.2967/jnmt.120.243626 pmid: 32883775 |
[39] |
LI J H, HE Z H, BANSAL V, et al. Low iodine diet in differentiated thyroid cancer: a review[J]. Clin Endocrinol, 2016, 84(1): 3-12.
doi: 10.1111/cen.12846 pmid: 26118628 |
[40] | LIM C Y, KIM J Y, YOON M J, et al. Effect of a low iodine diet vs. restricted iodine diet on postsurgical preparation for radioiodine ablation therapy in thyroid carcinoma patients[J]. Yonsei Med J, 2015, 56(4): 1021-1027. |
[41] | SCHLUMBERGER M, LEBOULLEUX S, CATARGI B, et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial[J]. Lancet Diabetes Endocrinol, 2018, 6(8): 618-626. |
[42] | DEHBI H M, MALLICK U, WADSLEY J, et al. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): long-term results of an open-label, non-inferiority randomised controlled trial[J]. Lancet Diabetes Endocrinol, 2019, 7(1): 44-51. |
[43] | XIAO J, YUN C H, CAO J J, et al. A pre-ablative thyroid-stimulating hormone with 30-70 mIU/L achieves better response to initial radioiodine remnant ablation in differentiated thyroid carcinoma patients[J]. Sci Rep, 2021, 11(1): 1348. |
[44] | VRACHIMIS A, RIEMANN B, MÄDER U, et al. Endogenous TSH levels at the time of 131I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality[J]. Eur J Nucl Med Mol Imaging, 2016, 43(2): 224-231. |
[45] | MATRONE A, LATROFA F, TORREGROSSA L, et al. Changing trend of thyroglobulin antibodies in patients with differentiated thyroid cancer treated with total thyroidectomy without 131I ablation[J]. Thyroid, 2018, 28(7): 871-879. |
[46] |
BUENO F, FALCONE M G G, PEÑALOZA M A, et al. Dynamics of serum antithyroglobulin antibodies in patients with differentiated thyroid cancer[J]. Endocrine, 2020, 67(2): 387-396.
doi: 10.1007/s12020-019-02112-7 pmid: 31650394 |
[47] |
Qichang W, Lin B, Gege Z, et al. Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis[J]. Eur J Endocrinol, 2019, 181(2): 93-102.
doi: 10.1530/EJE-19-0261 pmid: 31117054 |
[48] | ARAZ M, SOYDAL Ç, ÖZKAN E, et al. Role of thyroglobulin doubling time in differentiated thyroid cancer and its relationship with demographic-histopathologic risk factors and 18F-fluorodeoxyglucose positron emission tomography/computed tomography parameters[J]. Cancer Biother Radiopharm, 2021, 36(5): 425-432. |
[49] | ALBANO D, TULCHINSKY M, DONDI F, et al. The role of Tg kinetics in predicting 2-[18F]-FDG PET/CT results and overall survival in patients affected by differentiated thyroid carcinoma with detectable Tg and negative 131I-scan[J]. Endocrine, 2021, 74(2): 332-339. |
[50] | ALBANO D, TULCHINSKY M, DONDI F, et al. Thyroglobulin doubling time offers a better threshold than thyroglobulin level for selecting optimal candidates to undergo localizing [18F]FDG PET/CT in non-iodine avid differentiated thyroid carcinoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(2): 461-468. |
[51] | WANG H X, DAI H Y, LI Q R, et al. Investigating 18F-FDG PET/CT parameters as prognostic markers for differentiated thyroid cancer: a systematic review[J]. Front Oncol, 2021, 11: 648658. |
[52] |
CASTAGNA M G, MAINO F, CIPRI C, et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients[J]. Eur J Endocrinol, 2011, 165(3): 441-446.
doi: 10.1530/EJE-11-0466 pmid: 21750043 |
[53] |
HONG C M, LEE W K, JEONG S Y, et al. Superiority of delayed risk stratification in differentiated thyroid cancer after total thyroidectomy and radioactive iodine ablation[J]. Nucl Med Commun, 2014, 35(11): 1119-1126.
doi: 10.1097/MNM.0000000000000183 pmid: 25144561 |
[54] | KOWALSKA A, WALCZYK A, PAŁYGA I, et al. The delayed risk stratification system in the risk of differentiated thyroid cancer recurrence[J]. PLoS One, 2016, 11(4): e0153242. |
[55] |
JEON M J, KIM M, PARK S, et al. A follow-up strategy for patients with an excellent response to initial therapy for differentiated thyroid carcinoma: less is better[J]. Thyroid, 2018, 28(2): 187-192.
doi: 10.1089/thy.2017.0130 pmid: 29179642 |
[56] | PÉREZ-FERNÁNDEZ L, SASTRE J, ZAFÓN C, et al. Validation of dynamic risk stratification and impact of BRAF in risk assessment of thyroid cancer, a nation-wide multicenter study[J]. Front Endocrinol (Lausanne), 2023, 13: 1071775. |
[57] |
PITOIA F, JERKOVICH F, URCIUOLI C, et al. Implementing the modified 2009 American Thyroid Association risk stratification system in thyroid cancer patients with low and intermediate risk of recurrence[J]. Thyroid, 2015, 25(11): 1235-1242.
doi: 10.1089/thy.2015.0121 pmid: 26132983 |
[58] |
YOON J, YOON J H, HAN K, et al. Ultrasonography surveillance in papillary thyroid carcinoma patients after total thyroidectomy according to dynamic risk stratification[J]. Endocrine, 2020, 69(2): 347-357.
doi: 10.1007/s12020-020-02347-9 pmid: 32449109 |
[59] |
TRIMBOLI P, ZILIOLI V, IMPERIALI M, et al. High-sensitive basal serum thyroglobulin 6-12 months after thyroid ablation is strongly associated with early response to therapy and event-free survival in patients with low-to-intermediate risk differentiated thyroid carcinomas[J]. Eur J Endocrinol, 2017, 176(5): 497-504.
doi: 10.1530/EJE-16-1011 pmid: 28137736 |
[60] |
MAZZAFERRI E L, JHIANG S M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer[J]. Am J Med, 1994, 97(5): 418-428.
doi: 10.1016/0002-9343(94)90321-2 pmid: 7977430 |
[61] |
HIRSCH D, GORSHTEIN A, ROBENSHTOK E, et al. Second radioiodine treatment: limited benefit for differentiated thyroid cancer with locoregional persistent disease[J]. J Clin Endocrinol Metab, 2018, 103(2): 469-476.
doi: 10.1210/jc.2017-01790 pmid: 29126111 |
[62] |
HUNG M L, WU J X, LI N, et al. Association of radioactive iodine administration after reoperation with outcomes among patients with recurrent or persistent papillary thyroid cancer[J]. JAMA Surg, 2018, 153(12): 1098-1104.
doi: 10.1001/jamasurg.2018.2659 pmid: 30140908 |
[63] | SONG H J, QIU Z L, SHEN C T, et al. Pulmonary metastases in differentiated thyroid cancer: efficacy of radioiodine therapy and prognostic factors[J]. Eur J Endocrinol, 2015, 173(3): 399-408. |
[64] | JANNIN A, LAMARTINA L, MOUTARDE C, et al. Bone metastases from differentiated thyroid carcinoma: heterogenous tumor response to radioactive Iodine therapy and overall survival[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2401-2413. |
[65] | QIU Z L, SONG H J, XU Y H, et al. Efficacy and survival analysis of 131I therapy for bone metastases from differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2011, 96(10): 3078-3086. |
[66] | 中国临床肿瘤学会核医学专家委员会, 中国临床肿瘤学会甲状腺癌专家委员会, 中华医学会核医学分会, 等. 放射性碘难治性分化型甲状腺癌诊治管理指南(2024版)[J]. 中华核医学与分子影像杂志, 2024, 44(6): 359-372. |
Nuclear Medicine Expert Committee of Chinese Society of Clinical Oncology, Thyroid Cancer Expert Committee of Chinese Society of Clinical Oncology, Chinese Society of Nuclear Medicine, et al. Management guidelines for diagnosis and treatment of refractory differentiated thyroid cancer with radioiodine (2024 edition)[J]. Chin J Nucl Med Mol Image, 2024, 44(6): 359-372. | |
[67] | LIN Y S, WANG R F, HUANG R, et al. Chinese management guidelines for radioactive iodine-refractory differentiated thyroid cancer (2025 edition)[J]. Eur J Nucl Med Mol Imaging, 2025, 52(10): 3859-3876. |
[68] | BROWN A P, CHEN J, HITCHCOCK Y J, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2008, 93(2): 504-515. |
[69] | RUBINO C, DE VATHAIRE F, DOTTORINI M E, et al. Second primary malignancies in thyroid cancer patients[J]. Br J Cancer, 2003, 89(9): 1638-1644. |
[70] | REINECKE M J, AHLERS G, BURCHERT A, et al. Second primary malignancies induced by radioactive iodine treatment of differentiated thyroid carcinoma—a critical review and evaluation of the existing evidence[J]. Eur J Nucl Med Mol Imaging, 2022, 49(9): 3247-3256. |
[71] |
PASQUAL E, SCHONFELD S, MORTON L M, et al. Association between radioactive iodine treatment for pediatric and young adulthood differentiated thyroid cancer and risk of second primary malignancies[J]. J Clin Oncol, 2022, 40(13): 1439-1449.
doi: 10.1200/JCO.21.01841 pmid: 35044839 |
[72] | TENG C J, HU Y W, CHEN S C, et al. Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study[J]. J Natl Cancer Inst, 2016, 108(2): djv314. |
[1] | 刘如玉, 王晨一, 张波. 《2025版美国甲状腺学会成人甲状腺结节管理指南》及《2025版美国甲状腺学会成人分化型甲状腺癌管理指南》解读:甲状腺结节及分化型甲状腺癌超声、CT、MRI以及消融部分的进展[J]. 中国癌症杂志, 2025, 35(9): 826-832. |
[2] | 王昊, 梁军. 《2025版美国甲状腺学会成人分化型甲状腺癌管理指南》解读:基因分型指导下甲状腺癌的精准诊疗模式[J]. 中国癌症杂志, 2025, 35(9): 833-840. |
[3] | 伍一鸣, 冯楚瑶, 高莹, 武晓泓. 《2025版美国甲状腺学会成人分化型甲状腺癌管理指南》解读:围手术期甲状旁腺功能的评估、处理及术后TSH抑制的精准个体化管理[J]. 中国癌症杂志, 2025, 35(9): 841-849. |
[4] | 耿倩倩, 杨爱民. 碘难治性分化型甲状腺癌的治疗进展及展望[J]. 中国癌症杂志, 2025, 35(1): 30-39. |
[5] | 李汝平, 杨辉. 放射性碘难治性甲状腺癌的临床试验现状及未来展望[J]. 中国癌症杂志, 2025, 35(1): 40-48. |
[6] | 王任飞, 卢改霞. 核医学分子影像在放射性碘难治性分化型甲状腺癌评估中的独特价值与争议[J]. 中国癌症杂志, 2025, 35(1): 49-57. |
[7] | 林秋玉, 王宇鑫, 林承赫. 靶向治疗与免疫治疗在放射性碘难治性分化型甲状腺癌中的应用与前景[J]. 中国癌症杂志, 2025, 35(1): 58-67. |
[8] | 姜晓彤, 刘锦川, 张迎强, 王瞳, 郭宁, 孙郁青, 石聪, 颜兵, 林岩松. 诊断性131I全身显像在分化型甲状腺癌131I治疗决策中的作用[J]. 中国癌症杂志, 2025, 35(1): 77-84. |
[9] | 潘逸缙, 石聪, 孙郁青, 孙迪, 赵翊含, 彰金, 林岩松. 1993—2023年国际儿童及青少年分化型甲状腺癌131I治疗文献计量分析[J]. 中国癌症杂志, 2024, 34(12): 1123-1133. |
[10] | 邓姝婷, 冯源, 钱凯, 郭凯, 王卓颖. 基因突变特征与儿童及青少年分化型甲状腺癌远处转移相关性的meta分析[J]. 中国癌症杂志, 2022, 32(5): 388-396. |
[11] | 齐萌芳, 田甜, 黄蕤. 不同年龄儿童及青少年分化型甲状腺癌患者的临床病理学特征与131I治疗分析[J]. 中国癌症杂志, 2022, 32(5): 404-409. |
[12] | 郭文婷, 慕转转, 李征, 张迎强, 靳晓娜, 林岩松. 可疑甲状腺球蛋白增高性分化型甲状腺癌患者经131I治疗后的临床转归[J]. 中国癌症杂志, 2022, 32(5): 410-416. |
[13] | 中国临床肿瘤学会核医学专家委员会, 中国临床肿瘤学会甲状腺癌专家委员会, 中国医疗保健国际交流促进会甲状腺疾病专业委员会, 中国人口文化促进会甲状腺疾病防治专业委员会. 儿童及青少年分化型甲状腺癌核医学诊治中国专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(5): 451-468. |
[14] | 梅晓然, 冯方, 王辉, 韦智晓. 摄碘阳性的分化型甲状腺癌淋巴结转移灶131I疗效分析[J]. 中国癌症杂志, 2022, 32(11): 1091-1097. |
[15] | 吴绮楠, 童南伟 . 《肿瘤相关性高血糖管理指南(2021年版)》解读[J]. 中国癌症杂志, 2021, 31(12): 1153-1161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn