[1] |
RINGEL M D, SOSA J A, BALOCH Z, et al. 2025 American Thyroid Association management guidelines for adult patients with differentiated thyroid cancer[J]. Thyroid, 2025, 35(8): 841-985.
|
[2] |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133.
doi: 10.1089/thy.2015.0020
pmid: 26462967
|
[3] |
PILARSKI R, BURT R, KOHLMAN W, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria[J]. J Natl Cancer Inst, 2013, 105(21): 1607-1616.
doi: 10.1093/jnci/djt277
pmid: 24136893
|
[4] |
STEWART D R, BEST A F, WILLIAMS G M, et al. Neoplasm risk among individuals with a pathogenic germline variant in DICER1[J]. J Clin Oncol, 2019, 37(8): 668-676.
doi: 10.1200/JCO.2018.78.4678
pmid: 30715996
|
[5] |
CETTA F, MONTALTO G, GORI M, et al. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study[J]. J Clin Endocrinol Metab, 2000, 85(1): 286-292.
|
[6] |
HE H L, LI W, WU D Y, et al. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance[J]. PLoS One, 2013, 8(5): e61920.
|
[7] |
BROCK P, LIYNARACHCHI S, NIEMINEN T T, et al. CHEK2 founder variants and thyroid cancer risk[J]. Thyroid, 2024, 34(4): 477-483.
|
[8] |
KURTOM S, LIU J B, DOERFLER W R, et al. Tumor size and molecular risk group are associated with differentiated thyroid cancer recurrence[J]. Surgery, 2025, 177: 108838.
|
[9] |
CHEN B J, SHI Y, XU Y N, et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis[J]. Clin Endocrinol, 2021, 94(5): 731-742.
|
[10] |
TODA S, HIROSHIMA Y, IWASAKI H, et al. Genomic landscape and clinical features of advanced thyroid carcinoma: a national database study in Japan[J]. J Clin Endocrinol Metab, 2024, 109(11): 2784-2792.
doi: 10.1210/clinem/dgae271
pmid: 38630010
|
[11] |
SHONKA JR D C, HO A, CHINTAKUNTLAWAR A V, et al. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment[J]. Head Neck, 2022, 44(6): 1277-1300.
|
[12] |
BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
doi: 10.1016/S0140-6736(14)60421-9
pmid: 24768112
|
[13] |
SCHLUMBERGER M, TAHARA M, WIRTH L J. Lenvatinib in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(19): 1868.
|
[14] |
BROSE M S, PANASEYKIN Y, KONDA B, et al. A randomized study of lenvatinib 18 mg vs 24 mg in patients with radioiodine-refractory differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2022, 107(3): 776-787.
|
[15] |
TAHARA M, BROSE M S, WIRTH L J, et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer[J]. Eur J Cancer, 2019, 106: 61-68.
doi: S0959-8049(18)31430-8
pmid: 30471649
|
[16] |
DRILON A, LAETSCH T W, KUMMAR S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739.
|
[17] |
DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282.
|
[18] |
SUBBIAH V, HU M I, WIRTH L J, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501.
|
[19] |
DE SALINS V, LOGANADANE G, JOLY C, et al. Complete response in anaplastic lymphoma kinase-rearranged oncocytic thyroid cancer: a case report and review of literature[J]. World J Clin Oncol, 2020, 11(7): 495-503.
doi: 10.5306/wjco.v11.i7.495
pmid: 32821654
|
[20] |
BROSE M S, CABANILLAS M E, COHEN E E W, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(9): 1272-1282.
|
[21] |
BUSAIDY N L, KONDA B, WEI L, et al. Dabrafenib versus dabrafenib+trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial[J]. Thyroid, 2022, 32(10): 1184-1192.
|
[22] |
TAHARA M, KIYOTA N, IMAI H, et al. A phase 2 study of encorafenib in combination with binimetinib in patients with metastatic BRAF-mutated thyroid cancer in Japan[J]. Thyroid, 2024, 34(4): 467-476.
|
[23] |
SKOULIDIS F, LI B T, DY G K, et al. Sotorasib for lung cancers with KRAS p.G12C mutation[J]. N Engl J Med, 2021, 384(25): 2371-2381.
|
[24] |
KOTECHA R, SAHGAL A, MEHTA M P. Adagrasib in non-small-cell lung cancer[J]. N Engl J Med, 2022, 387(13): 1238-1239.
|
[25] |
HARADA G, DRILON A. TRK inhibitor activity and resistance in TRK fusion-positive cancers in adults[J]. Cancer Genet, 2022, 264/265: 33-39.
|
[26] |
SOLOMON B J, TAN L, LIN J J, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies[J]. J Thorac Oncol, 2020, 15(4): 541-549.
|
[27] |
SHOBAB L, GOMES-LIMA C, ZEYMO A, et al. Clinical, pathological, and molecular profiling of radioactive iodine refractory differentiated thyroid cancer[J]. Thyroid, 2019, 29(9): 1262-1268.
doi: 10.1089/thy.2019.0075
pmid: 31319763
|
[28] |
BASTMAN J J, SERRACINO H S, ZHU Y W, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer[J]. J Clin Endocrinol Metab, 2016, 101(7): 2863-2873.
doi: 10.1210/jc.2015-4227
pmid: 27045886
|
[29] |
LANDA I, IBRAHIMPASIC T, BOUCAI L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]. J Clin Invest, 2016, 126(3): 1052-1066.
doi: 10.1172/JCI85271
pmid: 26878173
|
[30] |
OTT P A, BANG Y J, PIHA-PAUL S A, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4): 318-327.
doi: 10.1200/JCO.2018.78.2276
pmid: 30557521
|
[31] |
OH D Y, ALGAZI A, CAPDEVILA J, et al. Efficacy and safety of pembrolizumab monotherapy in patients with advanced thyroid cancer in the phase 2 KEYNOTE-158 study[J]. Cancer, 2023, 129(8): 1195-1204.
|
[32] |
French JD, Haugen BR, Worden FP, et al. Combination targeted therapy with pembrolizumab and lenvatinib in progressive, radioiodine-refractory differentiated thyroid cancers[J]. Clin Cancer Res 2024; 30(17):3757-3767.
doi: 10.1158/1078-0432.CCR-23-3417
pmid: 38922338
|
[33] |
Dierks C, Seufert J, Aumann K, et al. Combination oflenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]. Thyroid 2021; 31(7):1076-1085.
|