中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (4): 424-430.doi: 10.19401/j.cnki.1007-3639.2025.04.011
• 综述 • 上一篇
曾丹丹1(), 罗文凤1, 叶甲舟2, 林燕1, 梁嵘1(
)
收稿日期:
2024-08-13
修回日期:
2025-04-07
出版日期:
2025-04-30
发布日期:
2025-05-16
通信作者:
梁嵘(ORCID: 0000-0003-0343-3277),博士,主任医师。
作者简介:
曾丹丹(ORCID: 0009-0002-6365-5760),硕士研究生在读。
基金资助:
ZENG Dandan1(), LUO Wenfeng1, YE Jiazhou2, LIN Yan1, LIANG Rong1(
)
Received:
2024-08-13
Revised:
2025-04-07
Published:
2025-04-30
Online:
2025-05-16
Contact:
LIANG Rong
Supported by:
文章分享
摘要:
组蛋白乳酸化修饰是一种新型的组蛋白翻译后修饰,通过乳酸分子与组蛋白赖氨酸残基的共价结合,在细胞代谢重编程中发挥关键作用,尤其在消化系统肿瘤的发生、发展中具有重要意义。近年来,组蛋白乳酸化在多种恶性肿瘤中的作用机制逐渐被揭示,显示其在肿瘤生物学中的广泛影响和临床潜力。本文重点梳理组蛋白乳酸化在消化系统肿瘤中的研究进展,具体分析其在胃癌、肝癌、结肠癌等主要消化道肿瘤中的作用机制。研究表明,乳酸化通过直接修饰组蛋白赖氨酸残基,调节肿瘤细胞的基因表达和染色质构象,进而促进肿瘤的增殖、侵袭和转移。乳酸化通过影响组蛋白与DNA的结合方式,改变染色质的开放性,增强癌基因的转录活性。此外,调控乳酸化水平或抑制乳酸化相关酶,如乳酸脱氢酶抑制剂、乳酸生成抑制剂及特定组蛋白乳酸化酶的靶向治疗,能够有效地抑制肿瘤的发生与发展,并在临床前模型中展示出潜在的治疗效果。本文从不同类型的消化道癌症出发,系统总结组蛋白乳酸化的作用机制,旨在为基于乳酸化修饰的靶向治疗策略提供新的研究方向和理论支持。
曾丹丹, 罗文凤, 叶甲舟, 林燕, 梁嵘. 组蛋白乳酸化在消化系统肿瘤中的研究进展及展望[J]. 中国癌症杂志, 2025, 35(4): 424-430.
ZENG Dandan, LUO Wenfeng, YE Jiazhou, LIN Yan, LIANG Rong. Research progress and prospect of histone lactylation in digestive system tumors[J]. China Oncology, 2025, 35(4): 424-430.
表1
组蛋白乳酸化与消化系统肿瘤关系的概述"
Type of disease | Cells type | Lactylation sites | Relevant molecule or pathway | Downstream effect | Reference |
---|---|---|---|---|---|
Gastric cancer | Tumor cell | Not mentioned | GLUT3, LDHA | Promoting proliferation, migration, and invasion of tumor cells | [ |
Tumor cell | Not mentioned | AARS, YAP | Inhibition of apoptotic signaling and accelerates tumor cell growth | [ | |
Liver cancer | Tumor stem cell, tumor cell | H3K9, H3K56, H3K14 | Demethylzeylasteral, RJA, glycolysis/glycolysis-related cellular pathways | Inhibition of proliferation of hepatocellular carcinoma stem cells, tumor cells | [ |
Tumur cell | H3K124 | CENPA/YY1 complex, CCND1, NRP2, YY1 | Promoting tumor growth | [ | |
Tumur cell | Not mentioned | ESM1, GP73 | Promoting angiogenesis in the tumor microenvironment for hepatocellular carcinoma growth and metastasis | [ | |
Macrophage | H3K18 | SRSF, MYB, GLUT1, LDHA, HK-1 | Promoting polarization of M2-type macrophages to create an immunosuppressive microenvironment | [ | |
Tumor infiltrating lymphocytes | Pantothenoylation | NR6A1, OSBP2, UNC119B; WNT, MAPK, MTOR, NOTCH signaling pathway | Promotion of immunosuppressive TME | [ | |
Pancreatic cancer | Tumor cell | Not mentioned | P53, KRAS, SLC16, Raf/MEK/ERK signaling pathway | Promoting tumor cell proliferation, invasion metastasis | [ |
Tumor cell, immune cell | Not mentioned | NUSAP1, c-Myc, HIF-1α, LDHA | Promotion of tumor cell proliferation and metastasis, immune escape | [ | |
Tumor cell | H4K12 | Nectin-2 | Enhancement of immune escape of tumor cells | [ | |
Tumor cell | H3K18 | TTK, BUB1B, AMPK pathway | Promoting tumor proliferation and inhibition of apoptosis | [ | |
Colorectal cancer | Not mentioned | Not mentioned | SMC4, PGAM1, HK2, PFKL, ALDOC, ABC transporter proteins | Tumor growth promotion, angiogenesis and immune escape, immunosuppressive TME | [ |
Neutrophil | H3K18 | GPR37, CXCL1, CXCL5; Hippo corridor | Promoting TME neutrophil recruitment | [ | |
Tumor cell | Not mentioned | LINC00152, YY1, IL-8, TNF-α; NF-κB passage | Promoting migration and invasion of tumor cells | [ | |
Macrophage | H3K18 | RARγ, TRAF6, TNF-α, IL-6; NF-κB, STAT3 pathway | Promoting tumor growth | [ | |
Tumor cell | H3K18 | NOP2/NSUN2, ENO1 | Promoting proliferation and metastasis of tumor cells | [ | |
Tumor cell | Not mentioned | KAT8, eEF1A2 | Promoting proliferation and metastasis of tumor cells | [ | |
Tumor cell | Not mentioned | circATXN7, NF-κB | Promoting immune escape of tumor cells | [ | |
Tumor cell | Not mentioned | RUBCNL, BECN1, PtdIns3K complexes | Promoting maturation and function of autophagosomes | [ |
[1] |
VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
doi: 10.1126/science.1160809 pmid: 19460998 |
[2] | ZHANG D, TANG Z Y, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. |
[3] |
ILANGO S, PAITAL B, JAYACHANDRAN P, et al. Epigenetic alterations in cancer[J]. Front Biosci (Landmark Ed), 2020, 25(6): 1058-1109.
doi: 10.2741/4847 pmid: 32114424 |
[4] |
WADDINGTON C H. The epigenotype. 1942[J]. Int J Epidemiol, 2012, 41(1): 10-13.
doi: 10.1093/ije/dyr184 pmid: 22186258 |
[5] |
HAIG D. Commentary: the epidemiology of epigenetics[J]. Int J Epidemiol, 2012, 41(1): 13-16.
doi: 10.1093/ije/dyr183 pmid: 22186259 |
[6] |
ZHANG Y J, SUN Z X, JIA J Q, et al. Overview of histone modification[J]. Adv Exp Med Biol, 2021, 1283: 1-16.
doi: 10.1007/978-981-15-8104-5_1 pmid: 33155134 |
[7] | WANG S, HUANG T F, WU Q L, et al. Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation[J]. J Clin Invest, 2024, 134(22): e176851. |
[8] |
WANG Z Q, WANG R M, NIU L X, et al. EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance[J]. NPJ Aging, 2024, 10(1): 24.
doi: 10.1038/s41514-024-00152-6 pmid: 38704365 |
[9] |
DANPANICHKUL P, SUPARAN K, TOTHANARUNGROJ P, et al. Epidemiology of gastrointestinal cancers: a systematic analysis from the Global Burden of Disease Study 2021[J]. Gut, 2024, 74(1): 26-34.
doi: 10.1136/gutjnl-2024-333227 pmid: 39242191 |
[10] | YANG D W, YIN J, SHAN L Q, et al. Identification of lysine-lactylated substrates in gastric cancer cells[J]. iScience, 2022, 25(7): 104630. |
[11] |
YANG H, YANG S F, HE J X, et al. Glucose transporter 3 (GLUT3) promotes lactylation modifications by regulating lactate dehydrogenase A (LDHA) in gastric cancer[J]. Cancer Cell Int, 2023, 23(1): 303.
doi: 10.1186/s12935-023-03162-8 pmid: 38041125 |
[12] | JU J Y, ZHANG H, LIN M B, et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer[J]. J Clin Invest, 2024, 134(10): e174587. |
[13] | YANG H, ZOU X M, YANG S F, et al. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer[J]. Front Immunol, 2023, 14: 1149989. |
[14] | LAI F L, GAO F. Auto-Kla: a novel web server to discriminate lysine lactylation sites using automated machine learning[J]. Brief Bioinform, 2023, 24(2): bbad070. |
[15] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
[16] | HONG H, CHEN X, WANG H G, et al. Global profiling of protein lysine lactylation and potential target modified protein analysis in hepatocellular carcinoma[J]. Proteomics, 2023, 23(9): e2200432. |
[17] | LIANG R, ZHANG J Y, LIU Z H, et al. Mechanism and molecular network of RBM8A-mediated regulation of oxaliplatin resistance in hepatocellular carcinoma[J]. Front Oncol, 2021, 10: 585452. |
[18] | FENG F, WU J Q, CHI Q J, et al. Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells[J]. Adv Sci (Weinh), 2024, 11(38): e2405975. |
[19] | PAN L H, FENG F, WU J Q, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181: 106270. |
[20] | XU H Y, LI L Q, WANG S S, et al. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites[J]. Phytomedicine, 2023, 118: 154940. |
[21] | LIAO J Y, CHEN Z Y, CHANG R Z, et al. CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1[J]. Int J Biol Sci, 2023, 19(16): 5218-5232. |
[22] | ZHAO P, QIAO C Z, WANG J W, et al. Histone lactylation facilitates hepatocellular carcinoma progression by upregulating endothelial cell-specific molecule 1 expression[J]. Mol Carcinog, 2024, 63(11): 2078-2089. |
[23] |
YE J Z, GAO X, HUANG X, et al. Integrating single-cell and spatial transcriptomics to uncover and elucidate GP73-mediated pro-angiogenic regulatory networks in hepatocellular carcinoma[J]. Research (Wash D C), 2024, 7: 0387.
doi: 10.34133/research.0387 pmid: 38939041 |
[24] | CAI J L, SONG L N, ZHANG F, et al. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma[J]. Cancer Commun (Lond), 2024, 44(11): 1231-1260. |
[25] | WU Q J, LI X, LONG M H, et al. Integrated analysis of histone lysine lactylation (Kla)-specific genes suggests that NR6A1 OSBP2 and UNC119B are novel therapeutic targets for hepatocellular carcinoma[J]. Sci Rep, 2023, 13(1): 18642. |
[26] | WU X F. In-depth discovery of protein lactylation in hepatocellular carcinoma[J]. Proteomics, 2023, 23(9): e2300003. |
[27] |
HALBROOK C J, LYSSIOTIS C A, PASCA DI MAGLIANO M, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754.
doi: 10.1016/j.cell.2023.02.014 pmid: 37059070 |
[28] |
YANG J S, REN B, YANG G, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis[J]. Cell Mol Life Sci, 2020, 77(2): 305-321.
doi: 10.1007/s00018-019-03278-z pmid: 31432232 |
[29] | CAO L D, WU J C, QU X Z, et al. Glycometabolic rearrangements: aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications[J]. J Exp Clin Cancer Res, 2020, 39(1): 267. |
[30] |
COMANDATORE A, FRANCZAK M, SMOLENSKI R T, et al. Lactate dehydrogenase and its clinical significance in pancreatic and thoracic cancers[J]. Semin Cancer Biol, 2022, 86(Pt 2): 93-100.
doi: 10.1016/j.semcancer.2022.09.001 pmid: 36096316 |
[31] | PENG T, SUN F, YANG J C, et al. Novel lactylation-related signature to predict prognosis for pancreatic adenocarcinoma[J]. World J Gastroenterol, 2024, 30(19): 2575-2602. |
[32] | CHEN M, CEN K L, SONG Y J, et al. NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2023, 567: 216285. |
[33] | TAKATA T, NAKAMURA A, YASUDA H, et al. Pathophysiological implications of protein lactylation in pancreatic epithelial tumors[J]. Acta Histochem Cytochem, 2024, 57(2): 57-66. |
[34] | WANG X, LIU X H, XIAO R L, et al. Histone lactylation dynamics: unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer[J]. Cancer Lett, 2024, 598: 217117. |
[35] |
LI F, SI W Z, XIA L, et al. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2024, 23(1): 90.
doi: 10.1186/s12943-024-02008-9 pmid: 38711083 |
[36] | DONG S, HUANG F, ZHANG H, et al. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma[J]. Biosci Rep, 2019, 39(2): BSR20182306. |
[37] | HUANG H M, WANG S T, XIA H P, et al. Lactate enhances NMNAT1 lactylation to sustain nuclear NAD+ salvage pathway and promote survival of pancreatic adenocarcinoma cells under glucose-deprived conditions[J]. Cancer Lett, 2024, 588: 216806. |
[38] |
QIN C, YANG G, YANG J S, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies[J]. Mol Cancer, 2020, 19(1): 50.
doi: 10.1186/s12943-020-01169-7 pmid: 32122374 |
[39] |
SUN X D, HE L F, LIU H, et al. The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity[J]. Cell Metab, 2023, 35(9): 1563-1579.e8.
doi: 10.1016/j.cmet.2023.07.005 pmid: 37543034 |
[40] | ZHOU J M, XU W Q, WU Y B, et al. GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway[J]. Oncogene, 2023, 42(45): 3319-3330. |
[41] | WANG J W, LIU Z, XU Y Y, et al. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration[J]. Front Cell Infect Microbiol, 2022, 12: 913815. |
[42] | LI X M, YANG Y, JIANG F Q, et al. Histone lactylation inhibits RARγ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling[J]. Cell Rep, 2024, 43(2): 113688. |
[43] | CHEN B X, DENG Y R, HONG Y T, et al. Metabolic recoding of NSUN2-mediated m5C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m5C-ENO1 positive feedback loop[J]. Adv Sci (Weinh), 2024, 11(28): e2309840. |
[44] | XIE B T, ZHANG M D, LI J, et al. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis[J]. Proc Natl Acad Sci USA, 2024, 121(8): e2314128121. |
[45] | ZHOU C, LI W X, LIANG Z X, et al. Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death[J]. Nat Commun, 2024, 15(1): 499. |
[46] | LI W H, ZHOU C, YU L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer[J]. Autophagy, 2024, 20(1): 114-130. |
[47] |
HUANG H X, CHEN K J, ZHU Y F, et al. A multi-dimensional approach to unravel the intricacies of lactylation related signature for prognostic and therapeutic insight in colorectal cancer[J]. J Transl Med, 2024, 22(1): 211.
doi: 10.1186/s12967-024-04955-9 pmid: 38419085 |
[1] | 胡玮, 任晓朦, 王洋, 赵培庆, 曹凯. TIPE通过调控LDHA表达影响三阴性乳腺癌糖代谢重编程机制研究[J]. 中国癌症杂志, 2025, 35(4): 386-393. |
[2] | 赵锴乐, 王磊, 耿健雄, 崔成伟, 于雁. 恶性胸膜间皮瘤治疗的研究现状与展望[J]. 中国癌症杂志, 2025, 35(3): 326-332. |
[3] | 安天棋, 田建辉, 周奕阳, 罗斌, 阙祖俊, 刘瑶, 于盼, 赵瑞华, 杨蕴. 免疫检查点抑制剂治疗相关胸腔积液的研究进展[J]. 中国癌症杂志, 2025, 35(3): 333-338. |
[4] | 蓝煜, 王风华. 2024晚期胃癌诊疗指南更新对比与梳理:CSCO、NCCN和ESMO[J]. 中国癌症杂志, 2025, 35(2): 219-227. |
[5] | 蔡舒玥, 谢佺, 周雨萱, 刘清竹, 邱玲, 林建国. NRP-1靶向分子探针助力乳腺癌诊断的最新进展及展望[J]. 中国癌症杂志, 2025, 35(2): 249-254. |
[6] | 中国抗癌协会神经内分泌肿瘤专业委员会. 中国抗癌协会神经内分泌肿瘤诊治指南(2025年版)[J]. 中国癌症杂志, 2025, 35(1): 85-142. |
[7] | 王梓霏, 丁雅卉, 李彦, 栾鑫, 汤忞. 生物3D打印在肿瘤研究及组织工程中的应用[J]. 中国癌症杂志, 2024, 34(9): 814-826. |
[8] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[9] | 葛祖荫, 宋坤, 林云霄, 钟烨凌, 郝敬铎. 循环肿瘤细胞FCGBP和BIGH3作为结直肠癌潜在生物标志物的可行性研究[J]. 中国癌症杂志, 2024, 34(8): 745-752. |
[10] | 肖毅, 吴名, 姚刚. 肿瘤类器官研究现状与展望[J]. 中国癌症杂志, 2024, 34(8): 763-776. |
[11] | 中国抗癌协会肿瘤整体评估专业委员会, 福建省抗癌协会癌痛专业委员会. 奥沙利铂超敏反应全程管理中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(8): 785-805. |
[12] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
[13] | 潘剑, 叶定伟, 朱耀, 王备合. 激素敏感性前列腺癌患者中PSMA PET/CT衍生参数与循环肿瘤DNA特征之间的相关性分析[J]. 中国癌症杂志, 2024, 34(7): 680-685. |
[14] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[15] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn