[1] |
SIEGEL R L, KRATZER T B, GIAQUINTO A N, et al. Cancer statistics, 2025[J]. CA A Cancer J Clinicians, 2025, 75(1): 10-45.
|
[2] |
BERGHOLZ J S, WANG Q W, WANG Q, et al. PI3Kβ controls immune evasion in PTEN-deficient breast tumours[J]. Nature, 2023, 617(7959): 139-146.
|
[3] |
MÜLLER M, MAY S, HALL H, et al. Human-correlated genetic models identify precision therapy for liver cancer[J]. Nature, 2025, 639(8055): 754-764.
|
[4] |
RASOOL R U, O’CONNOR C M, DAS C K, et al. Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance[J]. Nat Commun, 2023, 14(1): 5253.
doi: 10.1038/s41467-023-40760-6
pmid: 37644036
|
[5] |
PORTALE F, CARRIERO R, IOVINO M, et al. C/EBPβ-dependent autophagy inhibition hinders NK cell function in cancer[J]. Nat Commun, 2024, 15(1): 10343.
|
[6] |
CHENG C P, WANG J M, XU P H, et al. Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer[J]. Nat Cancer, 2022, 3(5): 565-580.
|
[7] |
SHI W, WANG Y, ZHAO Y H, et al. Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53deficiencies[J]. Sci Transl Med, 2023, 15(695): eadf6724.
|
[8] |
HU Z Y, TANG M, HUANG Y J, et al. SIRT7 facilitates endometrial cancer progression by regulating PTEN stability in an estrogen-dependent manner[J]. Nat Commun, 2025, 16(1): 2989.
|
[9] |
WELLENSTEIN M D, COFFELT S B, DUITS D E M, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis[J]. Nature, 2019, 572(7770): 538-542.
|
[10] |
THOENEN E, RANJAN A, PARRALES A, et al. Suppression of stress granule formation is a vulnerability imposed by mutant p53[J]. Nat Commun, 2025, 16(1): 2365.
|
[11] |
YANUSHKO D, GERMAN FALCON B, EL BIZRI R, et al. p53-loss induced prostatic epithelial cell plasticity and invasion is driven by a crosstalk with the tumor microenvironment[J]. Cell Death Dis, 2025, 16(1): 46.
doi: 10.1038/s41419-025-07361-1
pmid: 39865080
|
[12] |
SAILER V, VON AMSBERG G, DUENSING S, et al. Experimental in vitro, ex vivo and in vivo models in prostate cancer research[J]. Nat Rev Urol, 2023, 20(3): 158-178.
|
[13] |
JI Y Y, ZHANG W W, SHEN K, et al. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer[J]. Nat Commun, 2023, 14(1): 7794.
doi: 10.1038/s41467-023-43676-3
pmid: 38016952
|
[14] |
LI D, ZHAN Y, WANG N T, et al. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer[J]. Sci Adv, 2023, 9(14): eadc9446.
|
[15] |
WU X, WU J, HUANG J, et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation[J]. Mech Dev, 2001, 101(1/2): 61-69.
|
[16] |
CHAUDAGAR K, HIEROMNIMON H M, KHURANA R, et al. Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer[J]. Clin Cancer Res, 2023, 29(10): 1952-1968.
|
[17] |
GHISONI E, MOROTTI M, SARIVALASIS A, et al. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach[J]. Nat Rev Clin Oncol, 2024, 21(11): 801-817.
doi: 10.1038/s41571-024-00937-4
pmid: 39232212
|
[18] |
ZHENG Y Q, YU K, LIN J F, et al. Deep learning prioritizes cancer mutations that alter protein nucleocytoplasmic shuttling to drive tumorigenesis[J]. Nat Commun, 2025, 16(1): 2511.
|
[19] |
HAUSEMAN Z J, STAUFFER F, BEYER K S, et al. Targeting the SHOC2-RAS interaction in RAS-mutant cancers[J]. Nature, 2025, 642(8066): 232-241.
|