| [1] |
PARK J H, RIVIÈRE I, GONEN M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 449-459.
doi: 10.1056/NEJMoa1709919
|
| [2] |
SCHUSTER S J, BISHOP M R, TAM C S, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J]. N Engl J Med, 2019, 380(1): 45-56.
doi: 10.1056/NEJMoa1804980
|
| [3] |
FRAIETTA J A, LACEY S F, ORLANDO E J, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia[J]. Nat Med, 2018, 24(5): 563-571.
doi: 10.1038/s41591-018-0010-1
pmid: 29713085
|
| [4] |
GRUPP S A, KALOS M, BARRETT D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J]. N Engl J Med, 2013, 368(16): 1509-1518.
doi: 10.1056/NEJMoa1215134
|
| [5] |
MAUDE S L, FREY N, SHAW P A, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16): 1507-1517.
doi: 10.1056/NEJMoa1407222
|
| [6] |
ZHAO Y, CHEN J Q, ANDREATTA M, et al. IL-10-expressing CAR T cells resist dysfunction and mediate durable clearance of solid tumors and metastases[J]. Nat Biotechnol, 2024, 42(11): 1693-1704.
doi: 10.1038/s41587-023-02060-8
pmid: 38168996
|
| [7] |
XIAO Z B, TODD L, HUANG L, et al. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors[J]. bioRxiv, 2023.
|
| [8] |
ALBELDA S M. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn[J]. Nat Rev Clin Oncol, 2024, 21(1): 47-66.
doi: 10.1038/s41571-023-00832-4
|
| [9] |
KHOSRAVI G R, MOSTAFAVI S, BASTAN S, et al. Immunologic tumor microenvironment modulators for turning cold tumors hot[J]. Cancer Commun, 2024, 44(5): 521-553.
doi: 10.1002/cac2.v44.5
|
| [10] |
LU Y, ZHENG J R, LIN P, et al. Tumor microenvironment-derived exosomes: a double-edged sword for advanced T cell-based immunotherapy[J]. ACS Nano, 2024, 18(40): 27230-27260.
doi: 10.1021/acsnano.4c09190
pmid: 39319751
|
| [11] |
ZHOU L Y, YI M. Editorial: Harnessing tumor microenvironment for gynecologic cancer therapy[J]. Front Immunol, 2024, 15: 1407128.
doi: 10.3389/fimmu.2024.1407128
|
| [12] |
GANJALıKHANI-HAKEMI M, YANIKKAYA DEMIREL G, HE X, et al. Editorial: immunologic tumor microenvironment modulators for turning “cold” tumors to “hot” tumors[J]. Front Immunol, 2024, 15: 1425136.
doi: 10.3389/fimmu.2024.1425136
|
| [13] |
YAO L, ZHU X, SHAN Y Y, et al. Recent progress in anti-tumor nanodrugs based on tumor microenvironment redox regulation[J]. Small, 2024, 20(25): e2310018.
|
| [14] |
ROSENQUIST R, DAVI F, GHIA P. The microenvironment in lymphomas: dissecting the complex crosstalk between tumor cells and ‘by-stander’ cells[J]. Semin Cancer Biol, 2014, 24: 1-2.
doi: 10.1016/j.semcancer.2013.12.002
|
| [15] |
KASAKOVSKI D, XU L, LI Y Q. T cell senescence and CAR-T cell exhaustion in hematological malignancies[J]. J Hematol Oncol, 2018, 11(1): 91.
doi: 10.1186/s13045-018-0629-x
|
| [16] |
TOWERS R, TROMBELLO L, FUSENIG M, et al. Bone marrow-derived mesenchymal stromal cells obstruct AML-targeting CD8+ clonal effector and CAR T-cell function while promoting a senescence-associated phenotype[J]. Cancer Immunol Immunother, 2024, 73(1): 8.
doi: 10.1007/s00262-023-03594-1
|
| [17] |
ALEKSANDROVA K, LEISE J, PRIESNER C, et al. Functionality and cell senescence of CD4/CD8-selected CD20 CAR T cells manufactured using the automated CliniMACS prodigy® platform[J]. Transfus Med Hemother, 2019, 46(1): 47-54.
doi: 10.1159/000495772
|
| [18] |
WONG T S, MOHAMED TAP F, HASHIM Z, et al. Dual actions of gallic acid and andrographolide trigger AdipoR1 to stimulate insulin secretion in a streptozotocin-induced diabetes rat model[J]. J Tradit Complementary Med, 2023, 13(1): 11-19.
doi: 10.1016/j.jtcme.2022.09.002
|
| [19] |
BARAN C P, ZEIGLER M M, TRIDANDAPANI S, et al. The role of ROS and RNS in regulating life and death of blood monocytes[J]. Curr Pharm Des, 2004, 10(8): 855-866.
doi: 10.2174/1381612043452866
|
| [20] |
DENG B L, YANG B L, CHEN J Q, et al. Gallic acid induces T-helper-1-like T(reg) cells and strengthens immune checkpoint blockade efficacy[J]. J Immunother Cancer, 2022, 10(7): e004037.
doi: 10.1136/jitc-2021-004037
|
| [21] |
HUANG Q Q, JIANG X Y, WANG B X, et al. Gallic acid enhances GVL effects of T cells without exacerbating GVHD after haematopoietic stem cell transplantation[J]. Br J Haematol, 2025, 206(1): 120-132.
doi: 10.1111/bjh.v206.1
|
| [22] |
GARDNER R A, FINNEY O, ANNESLEY C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults[J]. Blood, 2017, 129(25): 3322-3331.
doi: 10.1182/blood-2017-02-769208
pmid: 28408462
|
| [23] |
CRISTOFALO V J, LORENZINI A, ALLEN R G, et al. Replicative senescence: a critical review[J]. Mech Ageing Dev, 2004, 125(10/11): 827-848.
doi: 10.1016/j.mad.2004.07.010
|
| [24] |
MA M, LI X, ZHONG M, et al. Galloylated toll-like receptor 7/8 agonist nanovaccine for enhanced tumor antigen delivery in personalized immunotherapy[J]. ACS Nano, 2025, 19(12): 11900-11912.
doi: 10.1021/acsnano.4c15442
pmid: 40102033
|
| [25] |
DEDOUSSIS G V, KALIORA A C, ANDRIKOPOULOS N K. Effect of phenols on natural killer (NK) cell-mediated death in the K562 human leukemic cell line[J]. Cell Biol Int, 2005, 29(11): 884-889.
|
| [26] |
NEO S Y, SIEW Y Y, YEW H C, et al. Effects of Leea indica leaf extracts and its phytoconstituents on natural killer cell-mediated cytotoxicity in human ovarian cancer[J]. BMC Complement Med Ther, 2023, 23(1): 79.
doi: 10.1186/s12906-023-03904-1
|